3 resultados para temporal analysis

em Boston University Digital Common


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The performance of different classification approaches is evaluated using a view-based approach for motion representation. The view-based approach uses computer vision and image processing techniques to register and process the video sequence. Two motion representations called Motion Energy Images and Motion History Image are then constructed. These representations collapse the temporal component in a way that no explicit temporal analysis or sequence matching is needed. Statistical descriptions are then computed using moment-based features and dimensionality reduction techniques. For these tests, we used 7 Hu moments, which are invariant to scale and translation. Principal Components Analysis is used to reduce the dimensionality of this representation. The system is trained using different subjects performing a set of examples of every action to be recognized. Given these samples, K-nearest neighbor, Gaussian, and Gaussian mixture classifiers are used to recognize new actions. Experiments are conducted using instances of eight human actions (i.e., eight classes) performed by seven different subjects. Comparisons in the performance among these classifiers under different conditions are analyzed and reported. Our main goals are to test this dimensionality-reduced representation of actions, and more importantly to use this representation to compare the advantages of different classification approaches in this recognition task.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A number of problems in network operations and engineering call for new methods of traffic analysis. While most existing traffic analysis methods are fundamentally temporal, there is a clear need for the analysis of traffic across multiple network links — that is, for spatial traffic analysis. In this paper we give examples of problems that can be addressed via spatial traffic analysis. We then propose a formal approach to spatial traffic analysis based on the wavelet transform. Our approach (graph wavelets) generalizes the traditional wavelet transform so that it can be applied to data elements connected via an arbitrary graph topology. We explore the necessary and desirable properties of this approach and consider some of its possible realizations. We then apply graph wavelets to measurements from an operating network. Our results show that graph wavelets are very useful for our motivating problems; for example, they can be used to form highly summarized views of an entire network's traffic load, to gain insight into a network's global traffic response to a link failure, and to localize the extent of a failure event within the network.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problem of discovering frequent arrangements of temporal intervals is studied. It is assumed that the database consists of sequences of events, where an event occurs during a time-interval. The goal is to mine temporal arrangements of event intervals that appear frequently in the database. The motivation of this work is the observation that in practice most events are not instantaneous but occur over a period of time and different events may occur concurrently. Thus, there are many practical applications that require mining such temporal correlations between intervals including the linguistic analysis of annotated data from American Sign Language as well as network and biological data. Two efficient methods to find frequent arrangements of temporal intervals are described; the first one is tree-based and uses depth first search to mine the set of frequent arrangements, whereas the second one is prefix-based. The above methods apply efficient pruning techniques that include a set of constraints consisting of regular expressions and gap constraints that add user-controlled focus into the mining process. Moreover, based on the extracted patterns a standard method for mining association rules is employed that applies different interestingness measures to evaluate the significance of the discovered patterns and rules. The performance of the proposed algorithms is evaluated and compared with other approaches on real (American Sign Language annotations and network data) and large synthetic datasets.