2 resultados para template
em Boston University Digital Common
Resumo:
An improved method for deformable shape-based image segmentation is described. Image regions are merged together and/or split apart, based on their agreement with an a priori distribution on the global deformation parameters for a shape template. The quality of a candidate region merging is evaluated by a cost measure that includes: homogeneity of image properties within the combined region, degree of overlap with a deformed shape model, and a deformation likelihood term. Perceptually-motivated criteria are used to determine where/how to split regions, based on the local shape properties of the region group's bounding contour. A globally consistent interpretation is determined in part by the minimum description length principle. Experiments show that the model-based splitting strategy yields a significant improvement in segmention over a method that uses merging alone.
Resumo:
A human-computer interface (HCI) system designed for use by people with severe disabilities is presented. People that are severely paralyzed or afflicted with diseases such as ALS (Lou Gehrig's disease) or multiple sclerosis are unable to move or control any parts of their bodies except for their eyes. The system presented here detects the user's eye blinks and analyzes the pattern and duration of the blinks, using them to provide input to the computer in the form of a mouse click. After the automatic initialization of the system occurs from the processing of the user's involuntary eye blinks in the first few seconds of use, the eye is tracked in real time using correlation with an online template. If the user's depth changes significantly or rapid head movement occurs, the system is automatically reinitialized. There are no lighting requirements nor offline templates needed for the proper functioning of the system. The system works with inexpensive USB cameras and runs at a frame rate of 30 frames per second. Extensive experiments were conducted to determine both the system's accuracy in classifying voluntary and involuntary blinks, as well as the system's fitness in varying environment conditions, such as alternative camera placements and different lighting conditions. These experiments on eight test subjects yielded an overall detection accuracy of 95.3%.