3 resultados para target field
em Boston University Digital Common
Resumo:
The distributed outstar, a generalization of the outstar neural network for spatial pattern learning, is introduced. In the outstar, signals from a source node cause weights to learn and recall arbitrary patterns across a target field of nodes. The distributed outstar replaces the outstar source node with a source field of arbitrarily many nodes, whose activity pattern may be arbitrarily distributed or compressed. Learning proceeds according to a principle of atrophy due to disuse, whereby a path weight decreases in joint proportion to the transmitted path signal and the degree of disuse of the target node. During learning, the total signal to a target node converges toward that node's activity level. Weight changes at a node are apportioned according to the distributed pattern of converging signals. Three synaptic transmission functions, by a product rule, a capacity rule, and a threshold rule, are examined for this system. The three rules are computationally equivalent when source field activity is maximally compressed, or winner-take-all. When source field activity is distributed, catastrophic forgetting may occur. Only the threshold rule solves this problem. Analysis of spatial pattern learning by distributed codes thereby leads to the conjecture that the unit of long-term memory in such a system is an adaptive threshold, rather than the multiplicative path weight widely used in neural models.
Resumo:
It is a neural network truth universally acknowledged, that the signal transmitted to a target node must be equal to the product of the path signal times a weight. Analysis of catastrophic forgetting by distributed codes leads to the unexpected conclusion that this universal synaptic transmission rule may not be optimal in certain neural networks. The distributed outstar, a network designed to support stable codes with fast or slow learning, generalizes the outstar network for spatial pattern learning. In the outstar, signals from a source node cause weights to learn and recall arbitrary patterns across a target field of nodes. The distributed outstar replaces the outstar source node with a source field, of arbitrarily many nodes, where the activity pattern may be arbitrarily distributed or compressed. Learning proceeds according to a principle of atrophy due to disuse whereby a path weight decreases in joint proportion to the transmittcd path signal and the degree of disuse of the target node. During learning, the total signal to a target node converges toward that node's activity level. Weight changes at a node are apportioned according to the distributed pattern of converging signals three types of synaptic transmission, a product rule, a capacity rule, and a threshold rule, are examined for this system. The three rules are computationally equivalent when source field activity is maximally compressed, or winner-take-all when source field activity is distributed, catastrophic forgetting may occur. Only the threshold rule solves this problem. Analysis of spatial pattern learning by distributed codes thereby leads to the conjecture that the optimal unit of long-term memory in such a system is a subtractive threshold, rather than a multiplicative weight.
Resumo:
Controlling the mobility pattern of mobile nodes (e.g., robots) to monitor a given field is a well-studied problem in sensor networks. In this setup, absolute control over the nodes’ mobility is assumed. Apart from the physical ones, no other constraints are imposed on planning mobility of these nodes. In this paper, we address a more general version of the problem. Specifically, we consider a setting in which mobility of each node is externally constrained by a schedule consisting of a list of locations that the node must visit at particular times. Typically, such schedules exhibit some level of slack, which could be leveraged to achieve a specific coverage distribution of a field. Such a distribution defines the relative importance of different field locations. We define the Constrained Mobility Coordination problem for Preferential Coverage (CMC-PC) as follows: given a field with a desired monitoring distribution, and a number of nodes n, each with its own schedule, we need to coordinate the mobility of the nodes in order to achieve the following two goals: 1) satisfy the schedules of all nodes, and 2) attain the required coverage of the given field. We show that the CMC-PC problem is NP-complete (by reduction to the Hamiltonian Cycle problem). Then we propose TFM, a distributed heuristic to achieve field coverage that is as close as possible to the required coverage distribution. We verify the premise of TFM using extensive simulations, as well as taxi logs from a major metropolitan area. We compare TFM to the random mobility strategy—the latter provides a lower bound on performance. Our results show that TFM is very successful in matching the required field coverage distribution, and that it provides, at least, two-fold query success ratio for queries that follow the target coverage distribution of the field.