3 resultados para strutture in cemento armato panelli x-lam prove sperimentali

em Boston University Digital Common


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Consider a network of processors (sites) in which each site x has a finite set N(x) of neighbors. There is a transition function f that for each site x computes the next state ξ(x) from the states in N(x). But these transitions (updates) are applied in arbitrary order, one or many at a time. If the state of site x at time t is η(x; t) then let us define the sequence ζ(x; 0); ζ(x; 1), ... by taking the sequence η(x; 0),η(x; 1), ... , and deleting each repetition, i.e. each element equal to the preceding one. The function f is said to have invariant histories if the sequence ζ(x; i), (while it lasts, in case it is finite) depends only on the initial configuration, not on the order of updates. This paper shows that though the invariant history property is typically undecidable, there is a useful simple sufficient condition, called commutativity: For any configuration, for any pair x; y of neighbors, if the updating would change both ξ(x) and ξ(y) then the result of updating first x and then y is the same as the result of doing this in the reverse order. This fact is derivable from known results on the confluence of term-rewriting systems but the self-contained proof given here may be justifiable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

System F is the well-known polymorphically-typed λ-calculus with universal quantifiers ("∀"). F+η is System F extended with the eta rule, which says that if term M can be given type τ and M η-reduces to N, then N can also be given the type τ. Adding the eta rule to System F is equivalent to adding the subsumption rule using the subtyping ("containment") relation that Mitchell defined and axiomatized [Mit88]. The subsumption rule says that if M can be given type τ and τ is a subtype of type σ, then M can be given type σ. Mitchell's subtyping relation involves no extensions to the syntax of types, i.e., no bounded polymorphism and no supertype of all types, and is thus unrelated to the system F≤("F-sub"). Typability for F+η is the problem of determining for any term M whether there is any type τ that can be given to it using the type inference rules of F+η. Typability has been proven undecidable for System F [Wel94] (without the eta rule), but the decidability of typability has been an open problem for F+η. Mitchell's subtyping relation has recently been proven undecidable [TU95, Wel95b], implying the undecidability of "type checking" for F+η. This paper reduces the problem of subtyping to the problem of typability for F+η, thus proving the undecidability of typability. The proof methods are similar in outline to those used to prove the undecidability of typability for System F, but the fine details differ greatly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article introduces a quantitative model of early visual system function. The model is formulated to unify analyses of spatial and temporal information processing by the nervous system. Functional constraints of the model suggest mechanisms analogous to photoreceptors, bipolar cells, and retinal ganglion cells, which can be formally represented with first order differential equations. Preliminary numerical simulations and analytical results show that the same formal mechanisms can explain the behavior of both X (linear) and Y (nonlinear) retinal ganglion cell classes by simple changes in the relative width of the receptive field (RF) center and surround mechanisms. Specifically, an increase in the width of the RF center results in a change from X-like to Y-like response, in agreement with anatomical data on the relationship between α- and