8 resultados para statistical learning mechanisms
em Boston University Digital Common
Resumo:
Accurate knowledge of traffic demands in a communication network enables or enhances a variety of traffic engineering and network management tasks of paramount importance for operational networks. Directly measuring a complete set of these demands is prohibitively expensive because of the huge amounts of data that must be collected and the performance impact that such measurements would impose on the regular behavior of the network. As a consequence, we must rely on statistical techniques to produce estimates of actual traffic demands from partial information. The performance of such techniques is however limited due to their reliance on limited information and the high amount of computations they incur, which limits their convergence behavior. In this paper we study a two-step approach for inferring network traffic demands. First we elaborate and evaluate a modeling approach for generating good starting points to be fed to iterative statistical inference techniques. We call these starting points informed priors since they are obtained using actual network information such as packet traces and SNMP link counts. Second we provide a very fast variant of the EM algorithm which extends its computation range, increasing its accuracy and decreasing its dependence on the quality of the starting point. Finally, we evaluate and compare alternative mechanisms for generating starting points and the convergence characteristics of our EM algorithm against a recently proposed Weighted Least Squares approach.
Resumo:
A key goal of behavioral and cognitive neuroscience is to link brain mechanisms to behavioral functions. The present article describes recent progress towards explaining how the visual cortex sees. Visual cortex, like many parts of perceptual and cognitive neocortex, is organized into six main layers of cells, as well as characteristic sub-lamina. Here it is proposed how these layered circuits help to realize the processes of developement, learning, perceptual grouping, attention, and 3D vision through a combination of bottom-up, horizontal, and top-down interactions. A key theme is that the mechanisms which enable developement and learning to occur in a stable way imply properties of adult behavior. These results thus begin to unify three fields: infant cortical developement, adult cortical neurophysiology and anatomy, and adult visual perception. The identified cortical mechanisms promise to generalize to explain how other perceptual and cognitive processes work.
Resumo:
Much sensory-motor behavior develops through imitation, as during the learning of handwriting by children. Such complex sequential acts are broken down into distinct motor control synergies, or muscle groups, whose activities overlap in time to generate continuous, curved movements that obey an intense relation between curvature and speed. The Adaptive Vector Integration to Endpoint (AVITEWRITE) model of Grossberg and Paine (2000) proposed how such complex movements may be learned through attentive imitation. The model suggest how frontal, parietal, and motor cortical mechanisms, such as difference vector encoding, under volitional control from the basal ganglia, interact with adaptively-timed, predictive cerebellar learning during movement imitation and predictive performance. Key psycophysical and neural data about learning to make curved movements were simulated, including a decrease in writing time as learning progresses; generation of unimodal, bell-shaped velocity profiles for each movement synergy; size scaling with isochrony, and speed scaling with preservation of the letter shape and the shapes of the velocity profiles; an inverse relation between curvature and tangential velocity; and a Two-Thirds Power Law relation between angular velocity and curvature. However, the model learned from letter trajectories of only one subject, and only qualitative kinematic comparisons were made with previously published human data. The present work describes a quantitative test of AVITEWRITE through direct comparison of a corpus of human handwriting data with the model's performance when it learns by tracing human trajectories. The results show that model performance was variable across subjects, with an average correlation between the model and human data of 89+/-10%. The present data from simulations using the AVITEWRITE model highlight some of its strengths while focusing attention on areas, such as novel shape learning in children, where all models of handwriting and learning of other complex sensory-motor skills would benefit from further research.
Resumo:
A growing wave of behavioral studies, using a wide variety of paradigms that were introduced or greatly refined in recent years, has generated a new wealth of parametric observations about serial order behavior. What was a mere trickle of neurophysiological studies has grown to a more steady stream of probes of neural sites and mechanisms underlying sequential behavior. Moreover, simulation models of serial behavior generation have begun to open a channel to link cellular dynamics with cognitive and behavioral dynamics. Here we summarize the major results from prominent sequence learning and performance tasks, namely immediate serial recall, typing, 2XN, discrete sequence production, and serial reaction time. These populate a continuum from higher to lower degrees of internal control of sequential organization. The main movement classes covered are speech and keypressing, both involving small amplitude movements that are very amenable to parametric study. A brief synopsis of classes of serial order models, vis-à-vis the detailing of major effects found in the behavioral data, leads to a focus on competitive queuing (CQ) models. Recently, the many behavioral predictive successes of CQ models have been joined by successful prediction of distinctively patterend electrophysiological recordings in prefrontal cortex, wherein parallel activation dynamics of multiple neural ensembles strikingly matches the parallel dynamics predicted by CQ theory. An extended CQ simulation model-the N-STREAMS neural network model-is then examined to highlight issues in ongoing attemptes to accomodate a broader range of behavioral and neurophysiological data within a CQ-consistent theory. Important contemporary issues such as the nature of working memory representations for sequential behavior, and the development and role of chunks in hierarchial control are prominent throughout.
Resumo:
How do reactive and planned behaviors interact in real time? How are sequences of such behaviors released at appropriate times during autonomous navigation to realize valued goals? Controllers for both animals and mobile robots, or animats, need reactive mechanisms for exploration, and learned plans to reach goal objects once an environment becomes familiar. The SOVEREIGN (Self-Organizing, Vision, Expectation, Recognition, Emotion, Intelligent, Goaloriented Navigation) animat model embodies these capabilities, and is tested in a 3D virtual reality environment. SOVEREIGN includes several interacting subsystems which model complementary properties of cortical What and Where processing streams and which clarify similarities between mechanisms for navigation and arm movement control. As the animat explores an environment, visual inputs are processed by networks that are sensitive to visual form and motion in the What and Where streams, respectively. Position-invariant and sizeinvariant recognition categories are learned by real-time incremental learning in the What stream. Estimates of target position relative to the animat are computed in the Where stream, and can activate approach movements toward the target. Motion cues from animat locomotion can elicit head-orienting movements to bring a new target into view. Approach and orienting movements are alternately performed during animat navigation. Cumulative estimates of each movement are derived from interacting proprioceptive and visual cues. Movement sequences are stored within a motor working memory. Sequences of visual categories are stored in a sensory working memory. These working memories trigger learning of sensory and motor sequence categories, or plans, which together control planned movements. Predictively effective chunk combinations are selectively enhanced via reinforcement learning when the animat is rewarded. Selected planning chunks effect a gradual transition from variable reactive exploratory movements to efficient goal-oriented planned movement sequences. Volitional signals gate interactions between model subsystems and the release of overt behaviors. The model can control different motor sequences under different motivational states and learns more efficient sequences to rewarded goals as exploration proceeds.
Resumo:
How do humans use predictive contextual information to facilitate visual search? How are consistently paired scenic objects and positions learned and used to more efficiently guide search in familiar scenes? For example, a certain combination of objects can define a context for a kitchen and trigger a more efficient search for a typical object, such as a sink, in that context. A neural model, ARTSCENE Search, is developed to illustrate the neural mechanisms of such memory-based contextual learning and guidance, and to explain challenging behavioral data on positive/negative, spatial/object, and local/distant global cueing effects during visual search. The model proposes how global scene layout at a first glance rapidly forms a hypothesis about the target location. This hypothesis is then incrementally refined by enhancing target-like objects in space as a scene is scanned with saccadic eye movements. The model clarifies the functional roles of neuroanatomical, neurophysiological, and neuroimaging data in visual search for a desired goal object. In particular, the model simulates the interactive dynamics of spatial and object contextual cueing in the cortical What and Where streams starting from early visual areas through medial temporal lobe to prefrontal cortex. After learning, model dorsolateral prefrontal cortical cells (area 46) prime possible target locations in posterior parietal cortex based on goalmodulated percepts of spatial scene gist represented in parahippocampal cortex, whereas model ventral prefrontal cortical cells (area 47/12) prime possible target object representations in inferior temporal cortex based on the history of viewed objects represented in perirhinal cortex. The model hereby predicts how the cortical What and Where streams cooperate during scene perception, learning, and memory to accumulate evidence over time to drive efficient visual search of familiar scenes.
Resumo:
The concepts of declarative memory and procedural memory have been used to distinguish two basic types of learning. A neural network model suggests how such memory processes work together as recognition learning, reinforcement learning, and sensory-motor learning take place during adaptive behaviors. To coordinate these processes, the hippocampal formation and cerebellum each contain circuits that learn to adaptively time their outputs. Within the model, hippocampal timing helps to maintain attention on motivationally salient goal objects during variable task-related delays, and cerebellar timing controls the release of conditioned responses. This property is part of the model's description of how cognitive-emotional interactions focus attention on motivationally valued cues, and how this process breaks down due to hippocampal ablation. The model suggests that the hippocampal mechanisms that help to rapidly draw attention to salient cues could prematurely release motor commands were not the release of these commands adaptively timed by the cerebellum. The model hippocampal system modulates cortical recognition learning without actually encoding the representational information that the cortex encodes. These properties avoid the difficulties faced by several models that propose a direct hippocampal role in recognition learning. Learning within the model hippocampal system controls adaptive timing and spatial orientation. Model properties hereby clarify how hippocampal ablations cause amnesic symptoms and difficulties with tasks which combine task delays, novelty detection, and attention towards goal objects amid distractions. When these model recognition, reinforcement, sensory-motor, and timing processes work together, they suggest how the brain can accomplish conditioning of multiple sensory events to delayed rewards, as during serial compound conditioning.
Resumo:
The giant cholinergic interneurons of the striatum are tonically active neurons (TANs) that respond with characteristic pauses to novel events and to appetitive and aversive conditioned stimuli. Fluctuations in acetylcholine release by TANs modulate performance- and learning-related dynamics in the striatum. Whereas tonic activity emerges from intrinsic properties of these neurons, glutamatergic inputs from thalamic centromedian-parafascicular nuclei, and dopaminergic inputs from midbrain, are required for the generation of pause responses. No prior computational models encompass both intrinsic and synaptically-gated dynamics. We present a mathematical model that robustly accounts for behavior-related electrophysiological properties of TANs in terms of their intrinsic physiological properties and known afferents. In the model, balanced intrinsic hyperpolarizing and depolarizing currents engender tonic firing, and glutamatergic inputs from thalamus (and cortex) both directly excite and indirectly inhibit TANs. If the latter inhibition, presumably mediated by GABAergic interneurons, exceeds a threshold, its effect is amplified by a KIR current to generate a prolonged pause. In the model, the intrinsic mechanisms and external inputs are both modulated by learning-dependent dopamine (DA) signals and our simulations revealed that many learning-dependent behaviors of TANs are explicable without recourse to learning-dependent changes in synapses onto TANs. The "teaching signal" that modulates reinforcement learning at cortico-striatal synapses may be a sequence composed of an adaptively scaled DA burst, a brief ACh burst, and a scaled ACh pause. Such an interpretation is consistent with recent data on cholinergic control of LTD of cortical synapses onto striatal spiny projection neurons.