9 resultados para stabi-lity of flows

em Boston University Digital Common


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The congestion control mechanisms of TCP make it vulnerable in an environment where flows with different congestion-sensitivity compete for scarce resources. With the increasing amount of unresponsive UDP traffic in today's Internet, new mechanisms are needed to enforce fairness in the core of the network. We propose a scalable Diffserv-like architecture, where flows with different characteristics are classified into separate service queues at the routers. Such class-based isolation provides protection so that flows with different characteristics do not negatively impact one another. In this study, we examine different aspects of UDP and TCP interaction and possible gains from segregating UDP and TCP into different classes. We also investigate the utility of further segregating TCP flows into two classes, which are class of short and class of long flows. Results are obtained analytically for both Tail-drop and Random Early Drop (RED) routers. Class-based isolation have the following salient features: (1) better fairness, (2) improved predictability for all kinds of flows, (3) lower transmission delay for delay-sensitive flows, and (4) better control over Quality of Service (QoS) of a particular traffic type.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Accurate measurement of network bandwidth is crucial for flexible Internet applications and protocols which actively manage and dynamically adapt to changing utilization of network resources. These applications must do so to perform tasks such as distributing and delivering high-bandwidth media, scheduling service requests and performing admission control. Extensive work has focused on two approaches to measuring bandwidth: measuring it hop-by-hop, and measuring it end-to-end along a path. Unfortunately, best-practice techniques for the former are inefficient and techniques for the latter are only able to observe bottlenecks visible at end-to-end scope. In this paper, we develop and simulate end-to-end probing methods which can measure bottleneck bandwidth along arbitrary, targeted subpaths of a path in the network, including subpaths shared by a set of flows. As another important contribution, we describe a number of practical applications which we foresee as standing to benefit from solutions to this problem, especially in emerging, flexible network architectures such as overlay networks, ad-hoc networks, peer-to-peer architectures and massively accessed content servers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The majority of the traffic (bytes) flowing over the Internet today have been attributed to the Transmission Control Protocol (TCP). This strong presence of TCP has recently spurred further investigations into its congestion avoidance mechanism and its effect on the performance of short and long data transfers. At the same time, the rising interest in enhancing Internet services while keeping the implementation cost low has led to several service-differentiation proposals. In such service-differentiation architectures, much of the complexity is placed only in access routers, which classify and mark packets from different flows. Core routers can then allocate enough resources to each class of packets so as to satisfy delivery requirements, such as predictable (consistent) and fair service. In this paper, we investigate the interaction among short and long TCP flows, and how TCP service can be improved by employing a low-cost service-differentiation scheme. Through control-theoretic arguments and extensive simulations, we show the utility of isolating TCP flows into two classes based on their lifetime/size, namely one class of short flows and another of long flows. With such class-based isolation, short and long TCP flows have separate service queues at routers. This protects each class of flows from the other as they possess different characteristics, such as burstiness of arrivals/departures and congestion/sending window dynamics. We show the benefits of isolation, in terms of better predictability and fairness, over traditional shared queueing systems with both tail-drop and Random-Early-Drop (RED) packet dropping policies. The proposed class-based isolation of TCP flows has several advantages: (1) the implementation cost is low since it only requires core routers to maintain per-class (rather than per-flow) state; (2) it promises to be an effective traffic engineering tool for improved predictability and fairness for both short and long TCP flows; and (3) stringent delay requirements of short interactive transfers can be met by increasing the amount of resources allocated to the class of short flows.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The heterogeneity and open nature of network systems make analysis of compositions of components quite challenging, making the design and implementation of robust network services largely inaccessible to the average programmer. We propose the development of a novel type system and practical type spaces which reflect simplified representations of the results and conclusions which can be derived from complex compositional theories in more accessible ways, essentially allowing the system architect or programmer to be exposed only to the inputs and output of compositional analysis without having to be familiar with the ins and outs of its internals. Toward this end we present the TRAFFIC (Typed Representation and Analysis of Flows For Interoperability Checks) framework, a simple flow-composition and typing language with corresponding type system. We then discuss and demonstrate the expressive power of a type space for TRAFFIC derived from the network calculus, allowing us to reason about and infer such properties as data arrival, transit, and loss rates in large composite network applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the problem of efficiently and fairly allocating bandwidth at a highly congested link to a diverse set of flows, including TCP flows with various Round Trip Times (RTT), non-TCP-friendly flows such as Constant-Bit-Rate (CBR) applications using UDP, misbehaving, or malicious flows. Though simple, a FIFO queue management is vulnerable. Fair Queueing (FQ) can guarantee max-min fairness but fails at efficiency. RED-PD exploits the history of RED's actions in preferentially dropping packets from higher-rate flows. Thus, RED-PD attempts to achieve fairness at low cost. By relying on RED's actions, RED-PD turns out not to be effective in dealing with non-adaptive flows in settings with a highly heterogeneous mix of flows. In this paper, we propose a new approach we call RED-NB (RED with No Bias). RED-NB does not rely on RED's actions. Rather it explicitly maintains its own history for the few high-rate flows. RED-NB then adaptively adjusts flow dropping probabilities to achieve max-min fairness. In addition, RED-NB helps RED itself at very high loads by tuning RED's dropping behavior to the flow characteristics (restricted in this paper to RTTs) to eliminate its bias against long-RTT TCP flows while still taking advantage of RED's features at low loads. Through extensive simulations, we confirm the fairness of RED-NB and show that it outperforms RED, RED-PD, and CHOKe in all scenarios.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Network traffic arises from the superposition of Origin-Destination (OD) flows. Hence, a thorough understanding of OD flows is essential for modeling network traffic, and for addressing a wide variety of problems including traffic engineering, traffic matrix estimation, capacity planning, forecasting and anomaly detection. However, to date, OD flows have not been closely studied, and there is very little known about their properties. We present the first analysis of complete sets of OD flow timeseries, taken from two different backbone networks (Abilene and Sprint-Europe). Using Principal Component Analysis (PCA), we find that the set of OD flows has small intrinsic dimension. In fact, even in a network with over a hundred OD flows, these flows can be accurately modeled in time using a small number (10 or less) of independent components or dimensions. We also show how to use PCA to systematically decompose the structure of OD flow timeseries into three main constituents: common periodic trends, short-lived bursts, and noise. We provide insight into how the various constituents contribute to the overall structure of OD flows and explore the extent to which this decomposition varies over time.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In a recent paper, Structural Analysis of Network Traffic Flows, we analyzed the set of Origin Destination traffic flows from the Sprint-Europe and Abilene backbone networks. This report presents the complete set of results from analyzing data from both networks. The results in this report are specific to the Sprint-1 and Abilene datasets studied in the above paper. The following results are presented here: 1 Rows of Principal Matrix (V) 2 1.1 Sprint-1 Dataset ................................ 2 1.2 Abilene Dataset.................................. 9 2 Set of Eigenflows 14 2.1 Sprint-1 Dataset.................................. 14 2.2 Abilene Dataset................................... 21 3 Classifying Eigenflows 26 3.1 Sprint-1 Dataset.................................. 26 3.2 Abilene Datase.................................... 44

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Detecting and understanding anomalies in IP networks is an open and ill-defined problem. Toward this end, we have recently proposed the subspace method for anomaly diagnosis. In this paper we present the first large-scale exploration of the power of the subspace method when applied to flow traffic. An important aspect of this approach is that it fuses information from flow measurements taken throughout a network. We apply the subspace method to three different types of sampled flow traffic in a large academic network: multivariate timeseries of byte counts, packet counts, and IP-flow counts. We show that each traffic type brings into focus a different set of anomalies via the subspace method. We illustrate and classify the set of anomalies detected. We find that almost all of the anomalies detected represent events of interest to network operators. Furthermore, the anomalies span a remarkably wide spectrum of event types, including denial of service attacks (single-source and distributed), flash crowds, port scanning, downstream traffic engineering, high-rate flows, worm propagation, and network outage.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

To support the diverse Quality of Service (QoS) requirements of real-time (e.g. audio/video) applications in integrated services networks, several routing algorithms that allow for the reservation of the needed bandwidth over a Virtual Circuit (VC) established on one of several candidate routes have been proposed. Traditionally, such routing is done using the least-loaded concept, and thus results in balancing the load across the set of candidate routes. In a recent study, we have established the inadequacy of this load balancing practice and proposed the use of load profiling as an alternative. Load profiling techniques allow the distribution of "available" bandwidth across a set of candidate routes to match the characteristics of incoming VC QoS requests. In this paper we thoroughly characterize the performance of VC routing using load profiling and contrast it to routing using load balancing and load packing. We do so both analytically and via extensive simulations of multi-class traffic routing in Virtual Path (VP) based networks. Our findings confirm that for routing guaranteed bandwidth flows in VP networks, load balancing is not desirable as it results in VP bandwidth fragmentation, which adversely affects the likelihood of accepting new VC requests. This fragmentation is more pronounced when the granularity of VC requests is large. Typically, this occurs when a common VC is established to carry the aggregate traffic flow of many high-bandwidth real-time sources. For VP-based networks, our simulation results show that our load-profiling VC routing scheme performs better or as well as the traditional load-balancing VC routing in terms of revenue under both skewed and uniform workloads. Furthermore, load-profiling routing improves routing fairness by proactively increasing the chances of admitting high-bandwidth connections.