2 resultados para sowing density
em Boston University Digital Common
Resumo:
We present results of calculations [1] that employ a new mixed quantum classical iterative density matrix propagation approach (ILDM , or so called Is‐Landmap) [2] to explore the survival of coherence in different photo synthetic models. Our model studies confirm the long lived quantum coherence , while conventional theoretical tools (such as Redfield equation) fail to describe these phenomenon [3,4]. Our ILDM method is a numerical exactly propagation scheme and can be served as a bench mark calculation tools[2]. Result get from ILDM and from other recent methods have been compared and show agreement with each other[4,5]. Long lived coherence plateau has been attribute to the shift of harmonic potential due to the system bath interaction, and the harvesting efficiency is a balance between the coherence and dissipation[1]. We use this approach to investigate the excitation energy transfer dynamics in various light harvesting complex include Fenna‐Matthews‐Olsen light harvesting complex[1] and Cryptophyte Phycocyanin 645 [6]. [1] P.Huo and D.F.Coker ,J. Chem. Phys. 133, 184108 (2010) . [2] E.R. Dunkel, S. Bonella, and D.F. Coker, J. Chem. Phys. 129, 114106 (2008). [3] A. Ishizaki and G.R. Fleming, J. Chem. Phys. 130, 234111 (2009). [4] A. Ishizaki and G.R. Fleming, Proc. Natl. Acad. Sci. 106, 17255 (2009). [5] G. Tao and W.H. Miller, J. Phys. Chem. Lett. 1, 891 (2010). [6] P.Huo and D.F.Coker in preparation
Resumo:
Wireless sensor networks have recently emerged as enablers of important applications such as environmental, chemical and nuclear sensing systems. Such applications have sophisticated spatial-temporal semantics that set them aside from traditional wireless networks. For example, the computation of temperature averaged over the sensor field must take into account local densities. This is crucial since otherwise the estimated average temperature can be biased by over-sampling areas where a lot more sensors exist. Thus, we envision that a fundamental service that a wireless sensor network should provide is that of estimating local densities. In this paper, we propose a lightweight probabilistic density inference protocol, we call DIP, which allows each sensor node to implicitly estimate its neighborhood size without the explicit exchange of node identifiers as in existing density discovery schemes. The theoretical basis of DIP is a probabilistic analysis which gives the relationship between the number of sensor nodes contending in the neighborhood of a node and the level of contention measured by that node. Extensive simulations confirm the premise of DIP: it can provide statistically reliable and accurate estimates of local density at a very low energy cost and constant running time. We demonstrate how applications could be built on top of our DIP-based service by computing density-unbiased statistics from estimated local densities.