11 resultados para small-world network

em Boston University Digital Common


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent work has shown the prevalence of small-world phenomena [28] in many networks. Small-world graphs exhibit a high degree of clustering, yet have typically short path lengths between arbitrary vertices. Internet AS-level graphs have been shown to exhibit small-world behaviors [9]. In this paper, we show that both Internet AS-level and router-level graphs exhibit small-world behavior. We attribute such behavior to two possible causes–namely the high variability of vertex degree distributions (which were found to follow approximately a power law [15]) and the preference of vertices to have local connections. We show that both factors contribute with different relative degrees to the small-world behavior of AS-level and router-level topologies. Our findings underscore the inefficacy of the Barabasi-Albert model [6] in explaining the growth process of the Internet, and provide a basis for more promising approaches to the development of Internet topology generators. We present such a generator and show the resemblance of the synthetic graphs it generates to real Internet AS-level and router-level graphs. Using these graphs, we have examined how small-world behaviors affect the scalability of end-system multicast. Our findings indicate that lower variability of vertex degree and stronger preference for local connectivity in small-world graphs results in slower network neighborhood expansion, and in longer average path length between two arbitrary vertices, which in turn results in better scaling of end system multicast.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We consider the problem of delivering popular streaming media to a large number of asynchronous clients. We propose and evaluate a cache-and-relay end-system multicast approach, whereby a client joining a multicast session caches the stream, and if needed, relays that stream to neighboring clients which may join the multicast session at some later time. This cache-and-relay approach is fully distributed, scalable, and efficient in terms of network link cost. In this paper we analytically derive bounds on the network link cost of our cache-and-relay approach, and we evaluate its performance under assumptions of limited client bandwidth and limited client cache capacity. When client bandwidth is limited, we show that although finding an optimal solution is NP-hard, a simple greedy algorithm performs surprisingly well in that it incurs network link costs that are very close to a theoretical lower bound. When client cache capacity is limited, we show that our cache-and-relay approach can still significantly reduce network link cost. We have evaluated our cache-and-relay approach using simulations over large, synthetic random networks, power-law degree networks, and small-world networks, as well as over large real router-level Internet maps.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We analyzed the logs of our departmental HTTP server http://cs-www.bu.edu as well as the logs of the more popular Rolling Stones HTTP server http://www.stones.com. These servers have very different purposes; the former caters primarily to local clients, whereas the latter caters exclusively to remote clients all over the world. In both cases, our analysis showed that remote HTTP accesses were confined to a very small subset of documents. Using a validated analytical model of server popularity and file access profiles, we show that by disseminating the most popular documents on servers (proxies) closer to the clients, network traffic could be reduced considerably, while server loads are balanced. We argue that this process could be generalized so as to provide for an automated demand-based duplication of documents. We believe that such server-based information dissemination protocols will be more effective at reducing both network bandwidth and document retrieval times than client-based caching protocols [2].

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Server performance has become a crucial issue for improving the overall performance of the World-Wide Web. This paper describes Webmonitor, a tool for evaluating and understanding server performance, and presents new results for a realistic workload. Webmonitor measures activity and resource consumption, both within the kernel and in HTTP processes running in user space. Webmonitor is implemented using an efficient combination of sampling and event-driven techniques that exhibit low overhead. Our initial implementation is for the Apache World-Wide Web server running on the Linux operating system. We demonstrate the utility of Webmonitor by measuring and understanding the performance of a Pentium-based PC acting as a dedicated WWW server. Our workload uses a file size distribution with a heavy tail. This captures the fact that Web servers must concurrently handle some requests for large audio and video files, and a large number of requests for small documents, containing text or images. Our results show that in a Web server saturated by client requests, over 90% of the time spent handling HTTP requests is spent in the kernel. Furthermore, keeping TCP connections open, as required by TCP, causes a factor of 2-9 increase in the elapsed time required to service an HTTP request. Data gathered from Webmonitor provide insight into the causes of this performance penalty. Specifically, we observe a significant increase in resource consumption along three dimensions: the number of HTTP processes running at the same time, CPU utilization, and memory utilization. These results emphasize the important role of operating system and network protocol implementation in determining Web server performance.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In a constantly changing world, humans are adapted to alternate routinely between attending to familiar objects and testing hypotheses about novel ones. We can rapidly learn to recognize and narne novel objects without unselectively disrupting our memories of familiar ones. We can notice fine details that differentiate nearly identical objects and generalize across broad classes of dissimilar objects. This chapter describes a class of self-organizing neural network architectures--called ARTMAP-- that are capable of fast, yet stable, on-line recognition learning, hypothesis testing, and naming in response to an arbitrary stream of input patterns (Carpenter, Grossberg, Markuzon, Reynolds, and Rosen, 1992; Carpenter, Grossberg, and Reynolds, 1991). The intrinsic stability of ARTMAP allows the system to learn incrementally for an unlimited period of time. System stability properties can be traced to the structure of its learned memories, which encode clusters of attended features into its recognition categories, rather than slow averages of category inputs. The level of detail in the learned attentional focus is determined moment-by-moment, depending on predictive success: an error due to over-generalization automatically focuses attention on additional input details enough of which are learned in a new recognition category so that the predictive error will not be repeated. An ARTMAP system creates an evolving map between a variable number of learned categories that compress one feature space (e.g., visual features) to learned categories of another feature space (e.g., auditory features). Input vectors can be either binary or analog. Computational properties of the networks enable them to perform significantly better in benchmark studies than alternative machine learning, genetic algorithm, or neural network models. Some of the critical problems that challenge and constrain any such autonomous learning system will next be illustrated. Design principles that work together to solve these problems are then outlined. These principles are realized in the ARTMAP architecture, which is specified as an algorithm. Finally, ARTMAP dynamics are illustrated by means of a series of benchmark simulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Network traffic arises from the superposition of Origin-Destination (OD) flows. Hence, a thorough understanding of OD flows is essential for modeling network traffic, and for addressing a wide variety of problems including traffic engineering, traffic matrix estimation, capacity planning, forecasting and anomaly detection. However, to date, OD flows have not been closely studied, and there is very little known about their properties. We present the first analysis of complete sets of OD flow timeseries, taken from two different backbone networks (Abilene and Sprint-Europe). Using Principal Component Analysis (PCA), we find that the set of OD flows has small intrinsic dimension. In fact, even in a network with over a hundred OD flows, these flows can be accurately modeled in time using a small number (10 or less) of independent components or dimensions. We also show how to use PCA to systematically decompose the structure of OD flow timeseries into three main constituents: common periodic trends, short-lived bursts, and noise. We provide insight into how the various constituents contribute to the overall structure of OD flows and explore the extent to which this decomposition varies over time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This report describes our attempt to add animation as another data type to be used on the World Wide Web. Our current network infrastructure, the Internet, is incapable of carrying video and audio streams for them to be used on the web for presentation purposes. In contrast, object-oriented animation proves to be efficient in terms of network resource requirements. We defined an animation model to support drawing-based and frame-based animation. We also extended the HyperText Markup Language in order to include this animation mode. BU-NCSA Mosanim, a modified version of the NCSA Mosaic for X(v2.5), is available to demonstrate the concept and potentials of animation in presentations an interactive game playing over the web.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently the notion of self-similarity has been shown to apply to wide-area and local-area network traffic. In this paper we examine the mechanisms that give rise to self-similar network traffic. We present an explanation for traffic self-similarity by using a particular subset of wide area traffic: traffic due to the World Wide Web (WWW). Using an extensive set of traces of actual user executions of NCSA Mosaic, reflecting over half a million requests for WWW documents, we show evidence that WWW traffic is self-similar. Then we show that the self-similarity in such traffic can be explained based on the underlying distributions of WWW document sizes, the effects of caching and user preference in file transfer, the effect of user "think time", and the superimposition of many such transfers in a local area network. To do this we rely on empirically measured distributions both from our traces and from data independently collected at over thirty WWW sites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Formal tools like finite-state model checkers have proven useful in verifying the correctness of systems of bounded size and for hardening single system components against arbitrary inputs. However, conventional applications of these techniques are not well suited to characterizing emergent behaviors of large compositions of processes. In this paper, we present a methodology by which arbitrarily large compositions of components can, if sufficient conditions are proven concerning properties of small compositions, be modeled and completely verified by performing formal verifications upon only a finite set of compositions. The sufficient conditions take the form of reductions, which are claims that particular sequences of components will be causally indistinguishable from other shorter sequences of components. We show how this methodology can be applied to a variety of network protocol applications, including two features of the HTTP protocol, a simple active networking applet, and a proposed web cache consistency algorithm. We also doing discuss its applicability to framing protocol design goals and to representing systems which employ non-model-checking verification methodologies. Finally, we briefly discuss how we hope to broaden this methodology to more general topological compositions of network applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The emergence of a sensor-networked world produces a clear and urgent need for well-planned, safe and secure software engineering. It is the role of universities to prepare graduates with the knowledge and experience to enter the work-force with a clear understanding of software design and its application to the future safety of computing. The snBench (Sensor Network WorkBench) project aims to provide support to the programming and deployment of Sensor Network Applications, enabling shared sensor embedded spaces to be easily tasked with various sensory applications by different users for simultaneous execution. In this report we discus our experience using the snBench research project as the foundation for semester-long project in a graduate level software engineering class at Boston University (CS511).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new neural network architecture is introduced for incremental supervised learning of recognition categories and multidimensional maps in response to arbitrary sequences of analog or binary input vectors. The architecture, called Fuzzy ARTMAP, achieves a synthesis of fuzzy logic and Adaptive Resonance Theory (ART) neural networks by exploiting a close formal similarity between the computations of fuzzy subsethood and ART category choice, resonance, and learning. Fuzzy ARTMAP also realizes a new Minimax Learning Rule that conjointly minimizes predictive error and maximizes code compression, or generalization. This is achieved by a match tracking process that increases the ART vigilance parameter by the minimum amount needed to correct a predictive error. As a result, the system automatically learns a minimal number of recognition categories, or "hidden units", to met accuracy criteria. Category proliferation is prevented by normalizing input vectors at a preprocessing stage. A normalization procedure called complement coding leads to a symmetric theory in which the MIN operator (Λ) and the MAX operator (v) of fuzzy logic play complementary roles. Complement coding uses on-cells and off-cells to represent the input pattern, and preserves individual feature amplitudes while normalizing the total on-cell/off-cell vector. Learning is stable because all adaptive weights can only decrease in time. Decreasing weights correspond to increasing sizes of category "boxes". Smaller vigilance values lead to larger category boxes. Improved prediction is achieved by training the system several times using different orderings of the input set. This voting strategy can also be used to assign probability estimates to competing predictions given small, noisy, or incomplete training sets. Four classes of simulations illustrate Fuzzy ARTMAP performance as compared to benchmark back propagation and genetic algorithm systems. These simulations include (i) finding points inside vs. outside a circle; (ii) learning to tell two spirals apart; (iii) incremental approximation of a piecewise continuous function; and (iv) a letter recognition database. The Fuzzy ARTMAP system is also compared to Salzberg's NGE system and to Simpson's FMMC system.