8 resultados para similarity relations
em Boston University Digital Common
Resumo:
We prove that first order logic is strictly weaker than fixed point logic over every infinite classes of finite ordered structures with unary relations: Over these classes there is always an inductive unary relation which cannot be defined by a first-order formula, even when every inductive sentence (i.e., closed formula) can be expressed in first-order over this particular class. Our proof first establishes a property valid for every unary relation definable by first-order logic over these classes which is peculiar to classes of ordered structures with unary relations. In a second step we show that this property itself can be expressed in fixed point logic and can be used to construct a non-elementary unary relation.
Resumo:
This paper introduces BoostMap, a method that can significantly reduce retrieval time in image and video database systems that employ computationally expensive distance measures, metric or non-metric. Database and query objects are embedded into a Euclidean space, in which similarities can be rapidly measured using a weighted Manhattan distance. Embedding construction is formulated as a machine learning task, where AdaBoost is used to combine many simple, 1D embeddings into a multidimensional embedding that preserves a significant amount of the proximity structure in the original space. Performance is evaluated in a hand pose estimation system, and a dynamic gesture recognition system, where the proposed method is used to retrieve approximate nearest neighbors under expensive image and video similarity measures. In both systems, BoostMap significantly increases efficiency, with minimal losses in accuracy. Moreover, the experiments indicate that BoostMap compares favorably with existing embedding methods that have been employed in computer vision and database applications, i.e., FastMap and Bourgain embeddings.
Resumo:
Recently the notion of self-similarity has been shown to apply to wide-area and local-area network traffic. In this paper we examine the mechanisms that give rise to self-similar network traffic. We present an explanation for traffic self-similarity by using a particular subset of wide area traffic: traffic due to the World Wide Web (WWW). Using an extensive set of traces of actual user executions of NCSA Mosaic, reflecting over half a million requests for WWW documents, we show evidence that WWW traffic is self-similar. Then we show that the self-similarity in such traffic can be explained based on the underlying distributions of WWW document sizes, the effects of caching and user preference in file transfer, the effect of user "think time", and the superimposition of many such transfers in a local area network. To do this we rely on empirically measured distributions both from our traces and from data independently collected at over thirty WWW sites.
Resumo:
Long-range dependence has been observed in many recent Internet traffic measurements. In addition, some recent studies have shown that under certain network conditions, TCP itself can produce traffic that exhibits dependence over limited timescales, even in the absence of higher-level variability. In this paper, we use a simple Markovian model to argue that when the loss rate is relatively high, TCP's adaptive congestion control mechanism indeed generates traffic with OFF periods exhibiting power-law shape over several timescales and thus introduces pseudo-long-range dependence into the overall traffic. Moreover, we observe that more variable initial retransmission timeout values for different packets introduces more variable packet inter-arrival times, which increases the burstiness of the overall traffic. We can thus explain why a single TCP connection can produce a time-series that can be misidentified as self-similar using standard tests.
Resumo:
Locating hands in sign language video is challenging due to a number of factors. Hand appearance varies widely across signers due to anthropometric variations and varying levels of signer proficiency. Video can be captured under varying illumination, camera resolutions, and levels of scene clutter, e.g., high-res video captured in a studio vs. low-res video gathered by a web cam in a user’s home. Moreover, the signers’ clothing varies, e.g., skin-toned clothing vs. contrasting clothing, short-sleeved vs. long-sleeved shirts, etc. In this work, the hand detection problem is addressed in an appearance matching framework. The Histogram of Oriented Gradient (HOG) based matching score function is reformulated to allow non-rigid alignment between pairs of images to account for hand shape variation. The resulting alignment score is used within a Support Vector Machine hand/not-hand classifier for hand detection. The new matching score function yields improved performance (in ROC area and hand detection rate) over the Vocabulary Guided Pyramid Match Kernel (VGPMK) and the traditional, rigid HOG distance on American Sign Language video gestured by expert signers. The proposed match score function is computationally less expensive (for training and testing), has fewer parameters and is less sensitive to parameter settings than VGPMK. The proposed detector works well on test sequences from an inexpert signer in a non-studio setting with cluttered background.
Resumo:
In work that involves mathematical rigor, there are numerous benefits to adopting a representation of models and arguments that can be supplied to a formal reasoning or verification system: reusability, automatic evaluation of examples, and verification of consistency and correctness. However, accessibility has not been a priority in the design of formal verification tools that can provide these benefits. In earlier work [Lap09a], we attempt to address this broad problem by proposing several specific design criteria organized around the notion of a natural context: the sphere of awareness a working human user maintains of the relevant constructs, arguments, experiences, and background materials necessary to accomplish the task at hand. This work expands one aspect of the earlier work by considering more extensively an essential capability for any formal reasoning system whose design is oriented around simulating the natural context: native support for a collection of mathematical relations that deal with common constructs in arithmetic and set theory. We provide a formal definition for a context of relations that can be used to both validate and assist formal reasoning activities. We provide a proof that any algorithm that implements this formal structure faithfully will necessary converge. Finally, we consider the efficiency of an implementation of this formal structure that leverages modular implementations of well-known data structures: balanced search trees and transitive closures of hypergraphs.
Resumo:
Nearest neighbor classification using shape context can yield highly accurate results in a number of recognition problems. Unfortunately, the approach can be too slow for practical applications, and thus approximation strategies are needed to make shape context practical. This paper proposes a method for efficient and accurate nearest neighbor classification in non-Euclidean spaces, such as the space induced by the shape context measure. First, a method is introduced for constructing a Euclidean embedding that is optimized for nearest neighbor classification accuracy. Using that embedding, multiple approximations of the underlying non-Euclidean similarity measure are obtained, at different levels of accuracy and efficiency. The approximations are automatically combined to form a cascade classifier, which applies the slower approximations only to the hardest cases. Unlike typical cascade-of-classifiers approaches, that are applied to binary classification problems, our method constructs a cascade for a multiclass problem. Experiments with a standard shape data set indicate that a two-to-three order of magnitude speed up is gained over the standard shape context classifier, with minimal losses in classification accuracy.