20 resultados para sequential frequent pattern
em Boston University Digital Common
Resumo:
The problem of discovering frequent poly-regions (i.e. regions of high occurrence of a set of items or patterns of a given alphabet) in a sequence is studied, and three efficient approaches are proposed to solve it. The first one is entropy-based and applies a recursive segmentation technique that produces a set of candidate segments which may potentially lead to a poly-region. The key idea of the second approach is the use of a set of sliding windows over the sequence. Each sliding window covers a sequence segment and keeps a set of statistics that mainly include the number of occurrences of each item or pattern in that segment. Combining these statistics efficiently yields the complete set of poly-regions in the given sequence. The third approach applies a technique based on the majority vote, achieving linear running time with a minimal number of false negatives. After identifying the poly-regions, the sequence is converted to a sequence of labeled intervals (each one corresponding to a poly-region). An efficient algorithm for mining frequent arrangements of intervals is applied to the converted sequence to discover frequently occurring arrangements of poly-regions in different parts of DNA, including coding regions. The proposed algorithms are tested on various DNA sequences producing results of significant biological meaning.
Resumo:
The system presented here is based on neurophysiological and electrophysiological data. It computes three types of increasingly integrated temporal and probability contexts, in a bottom-up mode. To each of these contexts corresponds an increasingly specific top-down priming effect on lower processing stages, mostly pattern recognition and discrimination. Contextual learning of time intervals, events' temporal order or sequential dependencies and events' prior probability results from the delivery of large stimuli sequences. This learning gives rise to emergent properties which closely match the experimental data.
Resumo:
To serve asynchronous requests using multicast, two categories of techniques, stream merging and periodic broadcasting have been proposed. For sequential streaming access where requests are uninterrupted from the beginning to the end of an object, these techniques are highly scalable: the required server bandwidth for stream merging grows logarithmically as request arrival rate, and the required server bandwidth for periodic broadcasting varies logarithmically as the inverse of start-up delay. However, sequential access is inappropriate to model partial requests and client interactivity observed in various streaming access workloads. This paper analytically and experimentally studies the scalability of multicast delivery under a non-sequential access model where requests start at random points in the object. We show that the required server bandwidth for any protocols providing immediate service grows at least as the square root of request arrival rate, and the required server bandwidth for any protocols providing delayed service grows linearly with the inverse of start-up delay. We also investigate the impact of limited client receiving bandwidth on scalability. We optimize practical protocols which provide immediate service to non-sequential requests. The protocols utilize limited client receiving bandwidth, and they are near-optimal in that the required server bandwidth is very close to its lower bound.
Resumo:
The problem of discovering frequent arrangements of regions of high occurrence of one or more items of a given alphabet in a sequence is studied, and two efficient approaches are proposed to solve it. The first approach is entropy-based and uses an existing recursive segmentation technique to split the input sequence into a set of homogeneous segments. The key idea of the second approach is to use a set of sliding windows over the sequence. Each sliding window keeps a set of statistics of a sequence segment that mainly includes the number of occurrences of each item in that segment. Combining these statistics efficiently yields the complete set of regions of high occurrence of the items of the given alphabet. After identifying these regions, the sequence is converted to a sequence of labeled intervals (each one corresponding to a region). An efficient algorithm for mining frequent arrangements of temporal intervals on a single sequence is applied on the converted sequence to discover frequently occurring arrangements of these regions. The proposed algorithms are tested on various DNA sequences producing results with significant biological meaning.
Resumo:
The problem of discovering frequent arrangements of temporal intervals is studied. It is assumed that the database consists of sequences of events, where an event occurs during a time-interval. The goal is to mine temporal arrangements of event intervals that appear frequently in the database. The motivation of this work is the observation that in practice most events are not instantaneous but occur over a period of time and different events may occur concurrently. Thus, there are many practical applications that require mining such temporal correlations between intervals including the linguistic analysis of annotated data from American Sign Language as well as network and biological data. Two efficient methods to find frequent arrangements of temporal intervals are described; the first one is tree-based and uses depth first search to mine the set of frequent arrangements, whereas the second one is prefix-based. The above methods apply efficient pruning techniques that include a set of constraints consisting of regular expressions and gap constraints that add user-controlled focus into the mining process. Moreover, based on the extracted patterns a standard method for mining association rules is employed that applies different interestingness measures to evaluate the significance of the discovered patterns and rules. The performance of the proposed algorithms is evaluated and compared with other approaches on real (American Sign Language annotations and network data) and large synthetic datasets.
Resumo:
British Petroleum (89A-1204); Defense Advanced Research Projects Agency (N00014-92-J-4015); National Science Foundation (IRI-90-00530); Office of Naval Research (N00014-91-J-4100); Air Force Office of Scientific Research (F49620-92-J-0225)
Resumo:
An active, attentionally-modulated recognition architecture is proposed for object recognition and scene analysis. The proposed architecture forms part of navigation and trajectory planning modules for mobile robots. Key characteristics of the system include movement planning and execution based on environmental factors and internal goal definitions. Real-time implementation of the system is based on space-variant representation of the visual field, as well as an optimal visual processing scheme utilizing separate and parallel channels for the extraction of boundaries and stimulus qualities. A spatial and temporal grouping module (VWM) allows for scene scanning, multi-object segmentation, and featural/object priming. VWM is used to modulate a tn~ectory formation module capable of redirecting the focus of spatial attention. Finally, an object recognition module based on adaptive resonance theory is interfaced through VWM to the visual processing module. The system is capable of using information from different modalities to disambiguate sensory input.
Resumo:
A neural pattern generator based upon a non-linear cooperative-competitive feedback neural network is presented. It can generate the two standard human gaits: the walk and the run. A scalar arousal or GO signal causes a bifurcation from one gait to the next. Although these two gaits are qualitatively different, they both have the same limb order and may exhibit oscillation frequencies that overlap. The model simulates the walk and the run via qualitatively different waveform shapes. The fraction of cycle that activity is above threshold distinguishes the two gaits, much as the duty cycles of the feet are longer in the walk than in the run.
Resumo:
A four-channel neural pattern generator is described in which both the frequency and the relative phase of oscillations are controlled by a scalar arousal or GO signal. The generator is used to simulate quadruped gaits; in particular, rapid transitions are simulated in the order - walk, trot, pace, and gallop - that occurs in the cat. Precise switching control is achieved by using an arousal dependent modulation of the model's inhibitory interactions. This modulation generates a different functional connectivity in a single network at different arousal levels.
Resumo:
This article presents a new neural pattern recognition architecture on multichannel data representation. The architecture emploies generalized ART modules as building blocks to construct a supervised learning system generating recognition codes on channels dynamically selected in context using serial and parallel match trackings led by inter-ART vigilance signals.
Resumo:
An extension to the orientational harmonic model is presented as a rotation, translation, and scale invariant representation of geometrical form in biological vision.
Resumo:
The proposed model, called the combinatorial and competitive spatio-temporal memory or CCSTM, provides an elegant solution to the general problem of having to store and recall spatio-temporal patterns in which states or sequences of states can recur in various contexts. For example, fig. 1 shows two state sequences that have a common subsequence, C and D. The CCSTM assumes that any state has a distributed representation as a collection of features. Each feature has an associated competitive module (CM) containing K cells. On any given occurrence of a particular feature, A, exactly one of the cells in CMA will be chosen to represent it. It is the particular set of cells active on the previous time step that determines which cells are chosen to represent instances of their associated features on the current time step. If we assume that typically S features are active in any state then any state has K^S different neural representations. This huge space of possible neural representations of any state is what underlies the model's ability to store and recall numerous context-sensitive state sequences. The purpose of this paper is simply to describe this mechanism.
Resumo:
A model which extends the adaptive resonance theory model to sequential memory is presented. This new model learns sequences of events and recalls a sequence when presented with parts of the sequence. A sequence can have repeated events and different sequences can share events. The ART model is modified by creating interconnected sublayers within ART's F2 layer. Nodes within F2 learn temporal patterns by forming recency gradients within LTM. Versions of the ART model like ART I, ART 2, and fuzzy ART can be used.
Resumo:
The distributed outstar, a generalization of the outstar neural network for spatial pattern learning, is introduced. In the outstar, signals from a source node cause weights to learn and recall arbitrary patterns across a target field of nodes. The distributed outstar replaces the outstar source node with a source field of arbitrarily many nodes, whose activity pattern may be arbitrarily distributed or compressed. Learning proceeds according to a principle of atrophy due to disuse, whereby a path weight decreases in joint proportion to the transmitted path signal and the degree of disuse of the target node. During learning, the total signal to a target node converges toward that node's activity level. Weight changes at a node are apportioned according to the distributed pattern of converging signals. Three synaptic transmission functions, by a product rule, a capacity rule, and a threshold rule, are examined for this system. The three rules are computationally equivalent when source field activity is maximally compressed, or winner-take-all. When source field activity is distributed, catastrophic forgetting may occur. Only the threshold rule solves this problem. Analysis of spatial pattern learning by distributed codes thereby leads to the conjecture that the unit of long-term memory in such a system is an adaptive threshold, rather than the multiplicative path weight widely used in neural models.
Resumo:
A new neural network architecture for spatial patttern recognition using multi-scale pyramida1 coding is here described. The network has an ARTMAP structure with a new class of ART-module, called Hybrid ART-module, as its front-end processor. Hybrid ART-module, which has processing modules corresponding to each scale channel of multi-scale pyramid, employs channels of finer scales only if it is necesssary to discriminate a pattern from others. This process is effected by serial match tracking. Also the parallel match tracking is used to select the spatial location having most salient feature and limit its attention to that part.