3 resultados para seek
em Boston University Digital Common
Resumo:
This paper attempts two tasks. First, it sketches how the natural sciences (including especially the biological sciences), the social sciences, and the scientific study of religion can be understood to furnish complementary, consonant perspectives on human beings and human groups. This suggests that it is possible to speak of a modern secular interpretation of humanity (MSIH) to which these perspectives contribute (though not without tensions). MSIH is not a comprehensive interpretation of human beings, if only because it adopts a posture of neutrality with regard to the reality of religious objects and the truth of theological claims about them. MSIH is certainly an impressively forceful interpretation, however, and it needs to be reckoned with by any perspective on human life that seeks to insert its truth claims into the arena of public debate. Second, the paper considers two challenges that MSIH poses to specifically theological interpretations of human beings. On the one hand, in spite of its posture of religious neutrality, MSIH is a key element in a class of wider, seemingly antireligious interpretations of humanity, including especially projectionist and illusionist critiques of religion. It is consonance with MSIH that makes these critiques such formidable competitors for traditional theological interpretations of human beings. On the other hand, and taking the religiously neutral posture of MSIH at face value, theological accounts of humanity that seek to coordinate the insights of MSIH with positive religious visions of human life must find ways to overcome or manage such dissonance as arises. The goal of synthesis is defended as important, and strategies for managing these challenges, especially in light of the pluralism of extant philosophical and theological interpretations of human beings, are advocated.
Resumo:
The Science of Network Service Composition has clearly emerged as one of the grand themes driving many of our research questions in the networking field today [NeXtworking 2003]. This driving force stems from the rise of sophisticated applications and new networking paradigms. By "service composition" we mean that the performance and correctness properties local to the various constituent components of a service can be readily composed into global (end-to-end) properties without re-analyzing any of the constituent components in isolation, or as part of the whole composite service. The set of laws that would govern such composition is what will constitute that new science of composition. The combined heterogeneity and dynamic open nature of network systems makes composition quite challenging, and thus programming network services has been largely inaccessible to the average user. We identify (and outline) a research agenda in which we aim to develop a specification language that is expressive enough to describe different components of a network service, and that will include type hierarchies inspired by type systems in general programming languages that enable the safe composition of software components. We envision this new science of composition to be built upon several theories (e.g., control theory, game theory, network calculus, percolation theory, economics, queuing theory). In essence, different theories may provide different languages by which certain properties of system components can be expressed and composed into larger systems. We then seek to lift these lower-level specifications to a higher level by abstracting away details that are irrelevant for safe composition at the higher level, thus making theories scalable and useful to the average user. In this paper we focus on services built upon an overlay management architecture, and we use control theory and QoS theory as example theories from which we lift up compositional specifications.
Resumo:
Dynamic service aggregation techniques can exploit skewed access popularity patterns to reduce the costs of building interactive VoD systems. These schemes seek to cluster and merge users into single streams by bridging the temporal skew between them, thus improving server and network utilization. Rate adaptation and secondary content insertion are two such schemes. In this paper, we present and evaluate an optimal scheduling algorithm for inserting secondary content in this scenario. The algorithm runs in polynomial time, and is optimal with respect to the total bandwidth usage over the merging interval. We present constraints on content insertion which make the overall QoS of the delivered stream acceptable, and show how our algorithm can satisfy these constraints. We report simulation results which quantify the excellent gains due to content insertion. We discuss dynamic scenarios with user arrivals and interactions, and show that content insertion reduces the channel bandwidth requirement to almost half. We also discuss differentiated service techniques, such as N-VoD and premium no-advertisement service, and show how our algorithm can support these as well.