3 resultados para roller leveling

em Boston University Digital Common


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The impacts of antiretroviral therapy on quality of life, mental health, labor productivity, and economic wellbeing for people living with HIV/AIDS in developing countries are only beginning to be measured. We conducted a systematic literature review to analyze the effect of antiretroviral therapy (ART) on these non-clinical indicators in developing countries and assess the state of research on these topics. Both qualitative and quantitative studies were included, as were peer-reviewed articles, gray literature, and conference abstracts and presentations. Findings are reported from 12 full-length articles, 7 abstracts, and 1 presentation (representing 16 studies). Compared to HIV-positive patients not yet on treatment, patients on ART reported significant improvements in physical, emotional and mental health and daily function. Work performance improved and absenteeism decreased, with the most dramatic changes occurring in the first three months of treatment and then leveling off. Little research has been done on the impact of ART on household wellbeing, with modest changes in child and family wellbeing within households where adults are receiving ART reported so far. Studies from developing countries have not yet assessed non-clinical outcomes of therapy beyond the first year; therefore, longitudinal outcomes are still unknown. As ART roll out extends throughout high HIV prevalence, low-resource countries and is sustained over years and decades, both positive and adverse non-clinical outcomes need to be empirically measured and qualitatively explored in order to support patient adherence and maximize treatment benefits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A mechanism is proposed that integrates low-level (image processing), mid-level (recursive 3D trajectory estimation), and high-level (action recognition) processes. It is assumed that the system observes multiple moving objects via a single, uncalibrated video camera. A novel extended Kalman filter formulation is used in estimating the relative 3D motion trajectories up to a scale factor. The recursive estimation process provides a prediction and error measure that is exploited in higher-level stages of action recognition. Conversely, higher-level mechanisms provide feedback that allows the system to reliably segment and maintain the tracking of moving objects before, during, and after occlusion. The 3D trajectory, occlusion, and segmentation information are utilized in extracting stabilized views of the moving object. Trajectory-guided recognition (TGR) is proposed as a new and efficient method for adaptive classification of action. The TGR approach is demonstrated using "motion history images" that are then recognized via a mixture of Gaussian classifier. The system was tested in recognizing various dynamic human outdoor activities; e.g., running, walking, roller blading, and cycling. Experiments with synthetic data sets are used to evaluate stability of the trajectory estimator with respect to noise.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A combined 2D, 3D approach is presented that allows for robust tracking of moving people and recognition of actions. It is assumed that the system observes multiple moving objects via a single, uncalibrated video camera. Low-level features are often insufficient for detection, segmentation, and tracking of non-rigid moving objects. Therefore, an improved mechanism is proposed that integrates low-level (image processing), mid-level (recursive 3D trajectory estimation), and high-level (action recognition) processes. A novel extended Kalman filter formulation is used in estimating the relative 3D motion trajectories up to a scale factor. The recursive estimation process provides a prediction and error measure that is exploited in higher-level stages of action recognition. Conversely, higher-level mechanisms provide feedback that allows the system to reliably segment and maintain the tracking of moving objects before, during, and after occlusion. The 3D trajectory, occlusion, and segmentation information are utilized in extracting stabilized views of the moving object that are then used as input to action recognition modules. Trajectory-guided recognition (TGR) is proposed as a new and efficient method for adaptive classification of action. The TGR approach is demonstrated using "motion history images" that are then recognized via a mixture-of-Gaussians classifier. The system was tested in recognizing various dynamic human outdoor activities: running, walking, roller blading, and cycling. Experiments with real and synthetic data sets are used to evaluate stability of the trajectory estimator with respect to noise.