2 resultados para reliability test system
em Boston University Digital Common
Resumo:
Reliability and availability have long been considered twin system properties that could be enhanced by distribution. Paradoxically, the traditional definitions of these properties do not recognize the positive impact of recovery as distinct from simple repair and restart on reliability, nor the negative effect of recovery, and of internetworking of clients and servers, on availability. As a result of employing the standard definitions, reliability would tend to be underestimated, and availability overestimated. We offer revised definitions of these two critical metrics, which we call service reliability and service availability, that improve the match between their formal expression, and intuitive meaning. A fortuitous advantage of our approach is that the product of our two metrics yields a highly meaningful figure of merit for the overall dependability of a system. But techniques that enhance system dependability exact a performance cost, so we conclude with a cohesive definition of performability that rewards the system for performance that is delivered to its client applications, after discounting the following consequences of failure: service denial and interruption, lost work, and recovery cost.
Resumo:
How do humans rapidly recognize a scene? How can neural models capture this biological competence to achieve state-of-the-art scene classification? The ARTSCENE neural system classifies natural scene photographs by using multiple spatial scales to efficiently accumulate evidence for gist and texture. ARTSCENE embodies a coarse-to-fine Texture Size Ranking Principle whereby spatial attention processes multiple scales of scenic information, ranging from global gist to local properties of textures. The model can incrementally learn and predict scene identity by gist information alone and can improve performance through selective attention to scenic textures of progressively smaller size. ARTSCENE discriminates 4 landscape scene categories (coast, forest, mountain and countryside) with up to 91.58% correct on a test set, outperforms alternative models in the literature which use biologically implausible computations, and outperforms component systems that use either gist or texture information alone. Model simulations also show that adjacent textures form higher-order features that are also informative for scene recognition.