3 resultados para reciprocal space mapping

em Boston University Digital Common


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A learning based framework is proposed for estimating human body pose from a single image. Given a differentiable function that maps from pose space to image feature space, the goal is to invert the process: estimate the pose given only image features. The inversion is an ill-posed problem as the inverse mapping is a one to many process. Hence multiple solutions exist, and it is desirable to restrict the solution space to a smaller subset of feasible solutions. For example, not all human body poses are feasible due to anthropometric constraints. Since the space of feasible solutions may not admit a closed form description, the proposed framework seeks to exploit machine learning techniques to learn an approximation that is smoothly parameterized over such a space. One such technique is Gaussian Process Latent Variable Modelling. Scaled conjugate gradient is then used find the best matching pose in the space of feasible solutions when given an input image. The formulation allows easy incorporation of various constraints, e.g. temporal consistency and anthropometric constraints. The performance of the proposed approach is evaluated in the task of upper-body pose estimation from silhouettes and compared with the Specialized Mapping Architecture. The estimation accuracy of the Specialized Mapping Architecture is at least one standard deviation worse than the proposed approach in the experiments with synthetic data. In experiments with real video of humans performing gestures, the proposed approach produces qualitatively better estimation results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Particle filtering is a popular method used in systems for tracking human body pose in video. One key difficulty in using particle filtering is caused by the curse of dimensionality: generally a very large number of particles is required to adequately approximate the underlying pose distribution in a high-dimensional state space. Although the number of degrees of freedom in the human body is quite large, in reality, the subset of allowable configurations in state space is generally restricted by human biomechanics, and the trajectories in this allowable subspace tend to be smooth. Therefore, a framework is proposed to learn a low-dimensional representation of the high-dimensional human poses state space. This mapping can be learned using a Gaussian Process Latent Variable Model (GPLVM) framework. One important advantage of the GPLVM framework is that both the mapping to, and mapping from the embedded space are smooth; this facilitates sampling in the low-dimensional space, and samples generated in the low-dimensional embedded space are easily mapped back into the original highdimensional space. Moreover, human body poses that are similar in the original space tend to be mapped close to each other in the embedded space; this property can be exploited when sampling in the embedded space. The proposed framework is tested in tracking 2D human body pose using a Scaled Prismatic Model. Experiments on real life video sequences demonstrate the strength of the approach. In comparison with the Multiple Hypothesis Tracking and the standard Condensation algorithm, the proposed algorithm is able to maintain tracking reliably throughout the long test sequences. It also handles singularity and self occlusion robustly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Emerging configurable infrastructures such as large-scale overlays and grids, distributed testbeds, and sensor networks comprise diverse sets of available computing resources (e.g., CPU and OS capabilities and memory constraints) and network conditions (e.g., link delay, bandwidth, loss rate, and jitter) whose characteristics are both complex and time-varying. At the same time, distributed applications to be deployed on these infrastructures exhibit increasingly complex constraints and requirements on resources they wish to utilize. Examples include selecting nodes and links to schedule an overlay multicast file transfer across the Grid, or embedding a network experiment with specific resource constraints in a distributed testbed such as PlanetLab. Thus, a common problem facing the efficient deployment of distributed applications on these infrastructures is that of "mapping" application-level requirements onto the network in such a manner that the requirements of the application are realized, assuming that the underlying characteristics of the network are known. We refer to this problem as the network embedding problem. In this paper, we propose a new approach to tackle this combinatorially-hard problem. Thanks to a number of heuristics, our approach greatly improves performance and scalability over previously existing techniques. It does so by pruning large portions of the search space without overlooking any valid embedding. We present a construction that allows a compact representation of candidate embeddings, which is maintained by carefully controlling the order via which candidate mappings are inserted and invalid mappings are removed. We present an implementation of our proposed technique, which we call NETEMBED – a service that identify feasible mappings of a virtual network configuration (the query network) to an existing real infrastructure or testbed (the hosting network). We present results of extensive performance evaluation experiments of NETEMBED using several combinations of real and synthetic network topologies. Our results show that our NETEMBED service is quite effective in identifying one (or all) possible embeddings for quite sizable queries and hosting networks – much larger than what any of the existing techniques or services are able to handle.