3 resultados para quantum confinement model
em Boston University Digital Common
Resumo:
A quantum Monte Carlo algorithm is constructed starting from the standard perturbation expansion in the interaction representation. The resulting configuration space is strongly related to that of the Stochastic Series Expansion (SSE) method, which is based on a direct power series expansion of exp(-beta*H). Sampling procedures previously developed for the SSE method can therefore be used also in the interaction representation formulation. The new method is first tested on the S=1/2 Heisenberg chain. Then, as an application to a model of great current interest, a Heisenberg chain including phonon degrees of freedom is studied. Einstein phonons are coupled to the spins via a linear modulation of the nearest-neighbor exchange. The simulation algorithm is implemented in the phonon occupation number basis, without Hilbert space truncations, and is exact. Results are presented for the magnetic properties of the system in a wide temperature regime, including the T-->0 limit where the chain undergoes a spin-Peierls transition. Some aspects of the phonon dynamics are also discussed. The results suggest that the effects of dynamic phonons in spin-Peierls compounds such as GeCuO3 and NaV2O5 must be included in order to obtain a correct quantitative description of their magnetic properties, both above and below the dimerization temperature.
Resumo:
We investigate numerically the ground state phase diagram of the one-dimensional extended Hubbard model, including an on--site interaction U and a nearest--neighbor interaction V. We focus on the ground state phases of the model in the V >> U region, where previous studies have suggested the possibility of dominant superconducting pairing fluctuations before the system phase separates at a critical value V=V_PS. Using quantum Monte Carlo methods on lattices much larger than in previous Lanczos diagonalization studies, we determine the boundary of phase separation, the Luttinger Liquid correlation exponent K_rho, and other correlation functions in this region. We find that phase separation occurs for V significantly smaller than previously reported. In addition, for negative U, we find that a uniform state re-enters from phase separation as the electron density is increased towards half filling. For V < V_PS, our results show that superconducting fluctuations are not dominant. The system behaves asymptotically as a Luttinger Liquid with K_rho < 1, but we also find strong low-energy (but gapped) charge-density fluctuations at a momentum not expected for a standard Luttinger Liquid.
Resumo:
We consider a fault model of Boolean gates, both classical and quantum, where some of the inputs may not be connected to the actual gate hardware. This model is somewhat similar to the stuck-at model which is a very popular model in testing Boolean circuits. We consider the problem of detecting such faults; the detection algorithm can query the faulty gate and its complexity is the number of such queries. This problem is related to determining the sensitivity of Boolean functions. We show how quantum parallelism can be used to detect such faults. Specifically, we show that a quantum algorithm can detect such faults more efficiently than a classical algorithm for a Parity gate and an AND gate. We give explicit constructions of quantum detector algorithms and show lower bounds for classical algorithms. We show that the model for detecting such faults is similar to algebraic decision trees and extend some known results from quantum query complexity to prove some of our results.