3 resultados para quantum 2
em Boston University Digital Common
Resumo:
A quantum Monte Carlo algorithm is constructed starting from the standard perturbation expansion in the interaction representation. The resulting configuration space is strongly related to that of the Stochastic Series Expansion (SSE) method, which is based on a direct power series expansion of exp(-beta*H). Sampling procedures previously developed for the SSE method can therefore be used also in the interaction representation formulation. The new method is first tested on the S=1/2 Heisenberg chain. Then, as an application to a model of great current interest, a Heisenberg chain including phonon degrees of freedom is studied. Einstein phonons are coupled to the spins via a linear modulation of the nearest-neighbor exchange. The simulation algorithm is implemented in the phonon occupation number basis, without Hilbert space truncations, and is exact. Results are presented for the magnetic properties of the system in a wide temperature regime, including the T-->0 limit where the chain undergoes a spin-Peierls transition. Some aspects of the phonon dynamics are also discussed. The results suggest that the effects of dynamic phonons in spin-Peierls compounds such as GeCuO3 and NaV2O5 must be included in order to obtain a correct quantitative description of their magnetic properties, both above and below the dimerization temperature.
Resumo:
It is shown that determining whether a quantum computation has a non-zero probability of accepting is at least as hard as the polynomial time hierarchy. This hardness result also applies to determining in general whether a given quantum basis state appears with nonzero amplitude in a superposition, or whether a given quantum bit has positive expectation value at the end of a quantum computation.
Resumo:
For any q > 1, let MOD_q be a quantum gate that determines if the number of 1's in the input is divisible by q. We show that for any q,t > 1, MOD_q is equivalent to MOD_t (up to constant depth). Based on the case q=2, Moore has shown that quantum analogs of AC^(0), ACC[q], and ACC, denoted QAC^(0)_wf, QACC[2], QACC respectively, define the same class of operators, leaving q > 2 as an open question. Our result resolves this question, implying that QAC^(0)_wf = QACC[q] = QACC for all q. We also prove the first upper bounds for QACC in terms of related language classes. We define classes of languages EQACC, NQACC (both for arbitrary complex amplitudes) and BQACC (for rational number amplitudes) and show that they are all contained in TC^(0). To do this, we show that a TC^(0) circuit can keep track of the amplitudes of the state resulting from the application of a QACC operator using a constant width polynomial size tensor sum. In order to accomplish this, we also show that TC^(0) can perform iterated addition and multiplication in certain field extensions.