4 resultados para public art project
em Boston University Digital Common
Resumo:
This report describes the history of the information commons, presents examples of online commons that provide new ways to store and deliver information, and concludes with policy recommendations. Available in PDF and HTML versions.
Resumo:
This article explores the state of the art in theories of special divine action by means of a study of the Divine Action Project (DAP) co-sponsored by the Vatican Observatory and the Center for Theology and the Natural Sciences in Berkeley. The basic aim is to introduce the DAP and to summarize its results, especially as these were compiled in the final “capstone” meeting of the DAP, and drawing on the published output of the project where possible. The subsidiary aim is to evaluate criticisms of theories of special divine action developed within the DAP.
Resumo:
Objectives: “Tooth Smart Healthy Start” is a randomized clinical trial which aims to reduce the incidence of early childhood caries (ECC) in Boston public housing residents as part of the NIH funded Northeast Center for Research to Evaluate and Eliminate Dental Disparities. The purpose of this project was to assess public housing stakeholders' perception of the oral health needs of public housing residents and their interest in replicating “Tooth Smart Healthy Start” in other public housing sites across the nation. Methods: The target population was the 180 attendees of the 2010 meeting of the Health Care for Residents of Public Housing National Conference. A ten question survey which assessed conference attendees' beliefs about oral health and its importance to public housing residents was distributed. Data was analyzed using SAS 9.1. Descriptive statistics were calculated for each variable and results were stratified by participants' roles. Results: Thirty percent of conference attendees completed the survey. The participants consisted of residents, agency representatives, and housing authority personnel. When asked to rank health issues facing public housing residents, oral health was rated as most important (42%) or top three (16%) by residents. The agency representatives and housing authority personnel rated oral health among the top three (33% and 58% respectively) and top five (36% and 25% respectively). When participants ranked the three greatest resident health needs out of eight choices, oral health was the most common response. Majority of the participants expressed interest in replicating the “Tooth Smart Healthy Start” program at their sites. Conclusion: All stakeholder groups identified oral health as one of the greatest health needs of residents in public housing. Furthermore, if shown to reduce ECC, there is significant interest in implementing the program amongst key public housing stakeholders across the nation.
Resumo:
Memories in Adaptive Resonance Theory (ART) networks are based on matched patterns that focus attention on those portions of bottom-up inputs that match active top-down expectations. While this learning strategy has proved successful for both brain models and applications, computational examples show that attention to early critical features may later distort memory representations during online fast learning. For supervised learning, biased ARTMAP (bARTMAP) solves the problem of over-emphasis on early critical features by directing attention away from previously attended features after the system makes a predictive error. Small-scale, hand-computed analog and binary examples illustrate key model dynamics. Twodimensional simulation examples demonstrate the evolution of bARTMAP memories as they are learned online. Benchmark simulations show that featural biasing also improves performance on large-scale examples. One example, which predicts movie genres and is based, in part, on the Netflix Prize database, was developed for this project. Both first principles and consistent performance improvements on all simulation studies suggest that featural biasing should be incorporated by default in all ARTMAP systems. Benchmark datasets and bARTMAP code are available from the CNS Technology Lab Website: http://techlab.bu.edu/bART/.