8 resultados para probabilistic refinement calculus
em Boston University Digital Common
Resumo:
We consider the problems of typability[1] and type checking[2] in the Girard/Reynolds second-order polymorphic typed λ-calculus, for which we use the short name "System F" and which we use in the "Curry style" where types are assigned to pure λ -terms. These problems have been considered and proven to be decidable or undecidable for various restrictions and extensions of System F and other related systems, and lower-bound complexity results for System F have been achieved, but they have remained "embarrassing open problems"[3] for System F itself. We first prove that type checking in System F is undecidable by a reduction from semi-unification. We then prove typability in System F is undecidable by a reduction from type checking. Since the reverse reduction is already known, this implies the two problems are equivalent. The second reduction uses a novel method of constructing λ-terms such that in all type derivations, specific bound variables must always be assigned a specific type. Using this technique, we can require that specific subterms must be typable using a specific, fixed type assignment in order for the entire term to be typable at all. Any desired type assignment may be simulated. We develop this method, which we call "constants for free", for both the λK and λI calculi.
Resumo:
We study the problem of type inference for a family of polymorphic type disciplines containing the power of Core-ML. This family comprises all levels of the stratification of the second-order lambda-calculus by "rank" of types. We show that typability is an undecidable problem at every rank k ≥ 3 of this stratification. While it was already known that typability is decidable at rank ≤ 2, no direct and easy-to-implement algorithm was available. To design such an algorithm, we develop a new notion of reduction and show how to use it to reduce the problem of typability at rank 2 to the problem of acyclic semi-unification. A by-product of our analysis is the publication of a simple solution procedure for acyclic semi-unification.
Resumo:
An iterative method for reconstructing a 3D polygonal mesh and color texture map from multiple views of an object is presented. In each iteration, the method first estimates a texture map given the current shape estimate. The texture map and its associated residual error image are obtained via maximum a posteriori estimation and reprojection of the multiple views into texture space. Next, the surface shape is adjusted to minimize residual error in texture space. The surface is deformed towards a photometrically-consistent solution via a series of 1D epipolar searches at randomly selected surface points. The texture space formulation has improved computational complexity over standard image-based error approaches, and allows computation of the reprojection error and uncertainty for any point on the surface. Moreover, shape adjustments can be constrained such that the recovered model's silhouette matches those of the input images. Experiments with real world imagery demonstrate the validity of the approach.
Resumo:
If every lambda-abstraction in a lambda-term M binds at most one variable occurrence, then M is said to be "linear". Many questions about linear lambda-terms are relatively easy to answer, e.g. they all are beta-strongly normalizing and all are simply-typable. We extend the syntax of the standard lambda-calculus L to a non-standard lambda-calculus L^ satisfying a linearity condition generalizing the notion in the standard case. Specifically, in L^ a subterm Q of a term M can be applied to several subterms R1,...,Rk in parallel, which we write as (Q. R1 \wedge ... \wedge Rk). The appropriate notion of beta-reduction beta^ for the calculus L^ is such that, if Q is the lambda-abstraction (\lambda x.P) with m\geq 0 bound occurrences of x, the reduction can be carried out provided k = max(m,1). Every M in L^ is thus beta^-SN. We relate standard beta-reduction and non-standard beta^-reduction in several different ways, and draw several consequences, e.g. a new simple proof for the fact that a standard term M is beta-SN iff M can be assigned a so-called "intersection" type ("top" type disallowed).
Resumo:
Large probabilistic graphs arise in various domains spanning from social networks to biological and communication networks. An important query in these graphs is the k nearest-neighbor query, which involves finding and reporting the k closest nodes to a specific node. This query assumes the existence of a measure of the "proximity" or the "distance" between any two nodes in the graph. To that end, we propose various novel distance functions that extend well known notions of classical graph theory, such as shortest paths and random walks. We argue that many meaningful distance functions are computationally intractable to compute exactly. Thus, in order to process nearest-neighbor queries, we resort to Monte Carlo sampling and exploit novel graph-transformation ideas and pruning opportunities. In our extensive experimental analysis, we explore the trade-offs of our approximation algorithms and demonstrate that they scale well on real-world probabilistic graphs with tens of millions of edges.
Resumo:
Weak references are references that do not prevent the object they point to from being garbage collected. Most realistic languages, including Java, SML/NJ, and OCaml to name a few, have some facility for programming with weak references. Weak references are used in implementing idioms like memoizing functions and hash-consing in order to avoid potential memory leaks. However, the semantics of weak references in many languages are not clearly specified. Without a formal semantics for weak references it becomes impossible to prove the correctness of implementations making use of this feature. Previous work by Hallett and Kfoury extends λgc, a language for modeling garbage collection, to λweak, a similar language with weak references. Using this previously formalized semantics for weak references, we consider two issues related to well-behavedness of programs. Firstly, we provide a new, simpler proof of the well-behavedness of the syntactically restricted fragment of λweak defined previously. Secondly, we give a natural semantic criterion for well-behavedness much broader than the syntactic restriction, which is useful as principle for programming with weak references. Furthermore we extend the result, proved in previously of λgc, which allows one to use type-inference to collect some reachable objects that are never used. We prove that this result holds of our language, and we extend this result to allow the collection of weakly-referenced reachable garbage without incurring the computational overhead sometimes associated with collecting weak bindings (e.g. the need to recompute a memoized function). Lastly we use extend the semantic framework to model the key/value weak references found in Haskell and we prove the Haskell is semantics equivalent to a simpler semantics due to the lack of side-effects in our language.
Resumo:
The second-order statistics of neural activity was examined in a model of the cat LGN and V1 during free-viewing of natural images. In the model, the specific patterns of thalamocortical activity required for a Bebbian maturation of direction-selective cells in VI were found during the periods of visual fixation, when small eye movements occurred, but not when natural images were examined in the absence of fixational eye movements. In addition, simulations of stroboscopic reming that replicated the abnormal pattern of eye movements observed in kittens chronically exposed to stroboscopic illumination produced results consistent with the reported loss of direction selectivity and preservation of orientation selectivity. These results suggest the involvement of the oculomotor activity of visual fixation in the maturation of cortical direction selectivity.
Resumo:
Before choosing, it helps to know both the expected value signaled by a predictive cue and the associated uncertainty that the reward will be forthcoming. Recently, Fiorillo et al. (2003) found the dopamine (DA) neurons of the SNc exhibit sustained responses related to the uncertainty that a cure will be followed by reward, in addition to phasic responses related to reward prediction errors (RPEs). This suggests that cue-dependent anticipations of the timing, magnitude, and uncertainty of rewards are learned and reflected in components of the DA signals broadcast by SNc neurons. What is the minimal local circuit model that can explain such multifaceted reward-related learning? A new computational model shows how learned uncertainty responses emerge robustly on single trial along with phasic RPE responses, such that both types of DA responses exhibit the empirically observed dependence on conditional probability, expected value of reward, and time since onset of the reward-predicting cue. The model includes three major pathways for computing: immediate expected values of cures, timed predictions of reward magnitudes (and RPEs), and the uncertainty associated with these predictions. The first two model pathways refine those previously modeled by Brown et al. (1999). A third, newly modeled, pathway is formed by medium spiny projection neurons (MSPNs) of the matrix compartment of the striatum, whose axons co-release GABA and a neuropeptide, substance P, both at synapses with GABAergic neurons in the SNr and with the dendrites (in SNr) of DA neurons whose somas are in ventral SNc. Co-release enables efficient computation of sustained DA uncertainty responses that are a non-monotonic function of the conditonal probability that a reward will follow the cue. The new model's incorporation of a striatal microcircuit allowed it to reveals that variability in striatal cholinergic transmission can explain observed difference, between monkeys, in the amplitutude of the non-monotonic uncertainty function. Involvement of matriceal MSPNs and striatal cholinergic transmission implpies a relation between uncertainty in the cue-reward contigency and action-selection functions of the basal ganglia. The model synthesizes anatomical, electrophysiological and behavioral data regarding the midbrain DA system in a novel way, by relating the ability to compute uncertainty, in parallel with other aspects of reward contingencies, to the unique distribution of SP inputs in ventral SN.