5 resultados para proactive traffic management
em Boston University Digital Common
Resumo:
Accurate knowledge of traffic demands in a communication network enables or enhances a variety of traffic engineering and network management tasks of paramount importance for operational networks. Directly measuring a complete set of these demands is prohibitively expensive because of the huge amounts of data that must be collected and the performance impact that such measurements would impose on the regular behavior of the network. As a consequence, we must rely on statistical techniques to produce estimates of actual traffic demands from partial information. The performance of such techniques is however limited due to their reliance on limited information and the high amount of computations they incur, which limits their convergence behavior. In this paper we study strategies to improve the convergence of a powerful statistical technique based on an Expectation-Maximization iterative algorithm. First we analyze modeling approaches to generating starting points. We call these starting points informed priors since they are obtained using actual network information such as packet traces and SNMP link counts. Second we provide a very fast variant of the EM algorithm which extends its computation range, increasing its accuracy and decreasing its dependence on the quality of the starting point. Finally, we study the convergence characteristics of our EM algorithm and compare it against a recently proposed Weighted Least Squares approach.
Resumo:
Accurate knowledge of traffic demands in a communication network enables or enhances a variety of traffic engineering and network management tasks of paramount importance for operational networks. Directly measuring a complete set of these demands is prohibitively expensive because of the huge amounts of data that must be collected and the performance impact that such measurements would impose on the regular behavior of the network. As a consequence, we must rely on statistical techniques to produce estimates of actual traffic demands from partial information. The performance of such techniques is however limited due to their reliance on limited information and the high amount of computations they incur, which limits their convergence behavior. In this paper we study a two-step approach for inferring network traffic demands. First we elaborate and evaluate a modeling approach for generating good starting points to be fed to iterative statistical inference techniques. We call these starting points informed priors since they are obtained using actual network information such as packet traces and SNMP link counts. Second we provide a very fast variant of the EM algorithm which extends its computation range, increasing its accuracy and decreasing its dependence on the quality of the starting point. Finally, we evaluate and compare alternative mechanisms for generating starting points and the convergence characteristics of our EM algorithm against a recently proposed Weighted Least Squares approach.
Resumo:
The exploding demand for services like the World Wide Web reflects the potential that is presented by globally distributed information systems. The number of WWW servers world-wide has doubled every 3 to 5 months since 1993, outstripping even the growth of the Internet. At each of these self-managed sites, the Common Gateway Interface (CGI) and Hypertext Transfer Protocol (HTTP) already constitute a rudimentary basis for contributing local resources to remote collaborations. However, the Web has serious deficiencies that make it unsuited for use as a true medium for metacomputing --- the process of bringing hardware, software, and expertise from many geographically dispersed sources to bear on large scale problems. These deficiencies are, paradoxically, the direct result of the very simple design principles that enabled its exponential growth. There are many symptoms of the problems exhibited by the Web: disk and network resources are consumed extravagantly; information search and discovery are difficult; protocols are aimed at data movement rather than task migration, and ignore the potential for distributing computation. However, all of these can be seen as aspects of a single problem: as a distributed system for metacomputing, the Web offers unpredictable performance and unreliable results. The goal of our project is to use the Web as a medium (within either the global Internet or an enterprise intranet) for metacomputing in a reliable way with performance guarantees. We attack this problem one four levels: (1) Resource Management Services: Globally distributed computing allows novel approaches to the old problems of performance guarantees and reliability. Our first set of ideas involve setting up a family of real-time resource management models organized by the Web Computing Framework with a standard Resource Management Interface (RMI), a Resource Registry, a Task Registry, and resource management protocols to allow resource needs and availability information be collected and disseminated so that a family of algorithms with varying computational precision and accuracy of representations can be chosen to meet realtime and reliability constraints. (2) Middleware Services: Complementary to techniques for allocating and scheduling available resources to serve application needs under realtime and reliability constraints, the second set of ideas aim at reduce communication latency, traffic congestion, server work load, etc. We develop customizable middleware services to exploit application characteristics in traffic analysis to drive new server/browser design strategies (e.g., exploit self-similarity of Web traffic), derive document access patterns via multiserver cooperation, and use them in speculative prefetching, document caching, and aggressive replication to reduce server load and bandwidth requirements. (3) Communication Infrastructure: Finally, to achieve any guarantee of quality of service or performance, one must get at the network layer that can provide the basic guarantees of bandwidth, latency, and reliability. Therefore, the third area is a set of new techniques in network service and protocol designs. (4) Object-Oriented Web Computing Framework A useful resource management system must deal with job priority, fault-tolerance, quality of service, complex resources such as ATM channels, probabilistic models, etc., and models must be tailored to represent the best tradeoff for a particular setting. This requires a family of models, organized within an object-oriented framework, because no one-size-fits-all approach is appropriate. This presents a software engineering challenge requiring integration of solutions at all levels: algorithms, models, protocols, and profiling and monitoring tools. The framework captures the abstract class interfaces of the collection of cooperating components, but allows the concretization of each component to be driven by the requirements of a specific approach and environment.
Resumo:
The pervasiveness of personal computing platforms offers an unprecedented opportunity to deploy large-scale services that are distributed over wide physical spaces. Two major challenges face the deployment of such services: the often resource-limited nature of these platforms, and the necessity of preserving the autonomy of the owner of these devices. These challenges preclude using centralized control and preclude considering services that are subject to performance guarantees. To that end, this thesis advances a number of new distributed resource management techniques that are shown to be effective in such settings, focusing on two application domains: distributed Field Monitoring Applications (FMAs), and Message Delivery Applications (MDAs). In the context of FMA, this thesis presents two techniques that are well-suited to the fairly limited storage and power resources of autonomously mobile sensor nodes. The first technique relies on amorphous placement of sensory data through the use of novel storage management and sample diffusion techniques. The second approach relies on an information-theoretic framework to optimize local resource management decisions. Both approaches are proactive in that they aim to provide nodes with a view of the monitored field that reflects the characteristics of queries over that field, enabling them to handle more queries locally, and thus reduce communication overheads. Then, this thesis recognizes node mobility as a resource to be leveraged, and in that respect proposes novel mobility coordination techniques for FMAs and MDAs. Assuming that node mobility is governed by a spatio-temporal schedule featuring some slack, this thesis presents novel algorithms of various computational complexities to orchestrate the use of this slack to improve the performance of supported applications. The findings in this thesis, which are supported by analysis and extensive simulations, highlight the importance of two general design principles for distributed systems. First, a-priori knowledge (e.g., about the target phenomena of FMAs and/or the workload of either FMAs or DMAs) could be used effectively for local resource management. Second, judicious leverage and coordination of node mobility could lead to significant performance gains for distributed applications deployed over resource-impoverished infrastructures.
Resumo:
Quality of Service (QoS) guarantees are required by an increasing number of applications to ensure a minimal level of fidelity in the delivery of application data units through the network. Application-level QoS does not necessarily follow from any transport-level QoS guarantees regarding the delivery of the individual cells (e.g. ATM cells) which comprise the application's data units. The distinction between application-level and transport-level QoS guarantees is due primarily to the fragmentation that occurs when transmitting large application data units (e.g. IP packets, or video frames) using much smaller network cells, whereby the partial delivery of a data unit is useless; and, bandwidth spent to partially transmit the data unit is wasted. The data units transmitted by an application may vary in size while being constant in rate, which results in a variable bit rate (VBR) data flow. That data flow requires QoS guarantees. Statistical multiplexing is inadequate, because no guarantees can be made and no firewall property exists between different data flows. In this paper, we present a novel resource management paradigm for the maintenance of application-level QoS for VBR flows. Our paradigm is based on Statistical Rate Monotonic Scheduling (SRMS), in which (1) each application generates its variable-size data units at a fixed rate, (2) the partial delivery of data units is of no value to the application, and (3) the QoS guarantee extended to the application is the probability that an arbitrary data unit will be successfully transmitted through the network to/from the application.