1 resultado para positron lifetimes
em Boston University Digital Common
Filtro por publicador
- University of Cagliari UniCA Eprints (1)
- Aberdeen University (4)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (6)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (47)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (3)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (26)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (23)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (2)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (85)
- Boston University Digital Common (1)
- Brock University, Canada (4)
- Bucknell University Digital Commons - Pensilvania - USA (4)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- CaltechTHESIS (22)
- Cambridge University Engineering Department Publications Database (20)
- CentAUR: Central Archive University of Reading - UK (39)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (182)
- Cochin University of Science & Technology (CUSAT), India (9)
- CORA - Cork Open Research Archive - University College Cork - Ireland (7)
- Dalarna University College Electronic Archive (1)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (2)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (3)
- DigitalCommons@The Texas Medical Center (9)
- Diposit Digital de la UB - Universidade de Barcelona (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- Duke University (8)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Greenwich Academic Literature Archive - UK (1)
- Helda - Digital Repository of University of Helsinki (9)
- Indian Institute of Science - Bangalore - Índia (54)
- INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES (IPEN) - Repositório Digital da Produção Técnico Científica - BibliotecaTerezine Arantes Ferra (2)
- Instituto Politécnico do Porto, Portugal (1)
- Massachusetts Institute of Technology (2)
- National Center for Biotechnology Information - NCBI (23)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (4)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Publishing Network for Geoscientific & Environmental Data (5)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (163)
- Queensland University of Technology - ePrints Archive (30)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (3)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (84)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (3)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (22)
- Universidade Complutense de Madrid (2)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (3)
- Université de Lausanne, Switzerland (5)
- Université de Montréal, Canada (14)
- University of Innsbruck Digital Library - Austria (1)
- University of Queensland eSpace - Australia (6)
Resumo:
Cells are known to utilize biochemical noise to probabilistically switch between distinct gene expression states. We demonstrate that such noise-driven switching is dominated by tails of probability distributions and is therefore exponentially sensitive to changes in physiological parameters such as transcription and translation rates. However, provided mRNA lifetimes are short, switching can still be accurately simulated using protein-only models of gene expression. Exponential sensitivity limits the robustness of noise-driven switching, suggesting cells may use other mechanisms in order to switch reliably.