3 resultados para one class SVM
em Boston University Digital Common
Resumo:
The majority of the traffic (bytes) flowing over the Internet today have been attributed to the Transmission Control Protocol (TCP). This strong presence of TCP has recently spurred further investigations into its congestion avoidance mechanism and its effect on the performance of short and long data transfers. At the same time, the rising interest in enhancing Internet services while keeping the implementation cost low has led to several service-differentiation proposals. In such service-differentiation architectures, much of the complexity is placed only in access routers, which classify and mark packets from different flows. Core routers can then allocate enough resources to each class of packets so as to satisfy delivery requirements, such as predictable (consistent) and fair service. In this paper, we investigate the interaction among short and long TCP flows, and how TCP service can be improved by employing a low-cost service-differentiation scheme. Through control-theoretic arguments and extensive simulations, we show the utility of isolating TCP flows into two classes based on their lifetime/size, namely one class of short flows and another of long flows. With such class-based isolation, short and long TCP flows have separate service queues at routers. This protects each class of flows from the other as they possess different characteristics, such as burstiness of arrivals/departures and congestion/sending window dynamics. We show the benefits of isolation, in terms of better predictability and fairness, over traditional shared queueing systems with both tail-drop and Random-Early-Drop (RED) packet dropping policies. The proposed class-based isolation of TCP flows has several advantages: (1) the implementation cost is low since it only requires core routers to maintain per-class (rather than per-flow) state; (2) it promises to be an effective traffic engineering tool for improved predictability and fairness for both short and long TCP flows; and (3) stringent delay requirements of short interactive transfers can be met by increasing the amount of resources allocated to the class of short flows.
Resumo:
The congestion control mechanisms of TCP make it vulnerable in an environment where flows with different congestion-sensitivity compete for scarce resources. With the increasing amount of unresponsive UDP traffic in today's Internet, new mechanisms are needed to enforce fairness in the core of the network. We propose a scalable Diffserv-like architecture, where flows with different characteristics are classified into separate service queues at the routers. Such class-based isolation provides protection so that flows with different characteristics do not negatively impact one another. In this study, we examine different aspects of UDP and TCP interaction and possible gains from segregating UDP and TCP into different classes. We also investigate the utility of further segregating TCP flows into two classes, which are class of short and class of long flows. Results are obtained analytically for both Tail-drop and Random Early Drop (RED) routers. Class-based isolation have the following salient features: (1) better fairness, (2) improved predictability for all kinds of flows, (3) lower transmission delay for delay-sensitive flows, and (4) better control over Quality of Service (QoS) of a particular traffic type.
Resumo:
Object detection is challenging when the object class exhibits large within-class variations. In this work, we show that foreground-background classification (detection) and within-class classification of the foreground class (pose estimation) can be jointly learned in a multiplicative form of two kernel functions. One kernel measures similarity for foreground-background classification. The other kernel accounts for latent factors that control within-class variation and implicitly enables feature sharing among foreground training samples. Detector training can be accomplished via standard SVM learning. The resulting detectors are tuned to specific variations in the foreground class. They also serve to evaluate hypotheses of the foreground state. When the foreground parameters are provided in training, the detectors can also produce parameter estimate. When the foreground object masks are provided in training, the detectors can also produce object segmentation. The advantages of our method over past methods are demonstrated on data sets of human hands and vehicles.