2 resultados para nucleus-nucleus interaction potential

em Boston University Digital Common


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Accurate head tilt detection has a large potential to aid people with disabilities in the use of human-computer interfaces and provide universal access to communication software. We show how it can be utilized to tab through links on a web page or control a video game with head motions. It may also be useful as a correction method for currently available video-based assistive technology that requires upright facial poses. Few of the existing computer vision methods that detect head rotations in and out of the image plane with reasonable accuracy can operate within the context of a real-time communication interface because the computational expense that they incur is too great. Our method uses a variety of metrics to obtain a robust head tilt estimate without incurring the computational cost of previous methods. Our system runs in real time on a computer with a 2.53 GHz processor, 256 MB of RAM and an inexpensive webcam, using only 55% of the processor cycles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A neural network model of early visual processing offers an explanation of brightness effects often associated with illusory contours. Top-down feedback from the model's analog of visual cortical complex cells to model lateral geniculate nucleus (LGN) cells are used to enhance contrast at line ends and other areas of boundary discontinuity. The result is an increase in perceived brightness outside a dark line end, akin to what Kennedy (1979) termed "brightness buttons" in his analysis of visual illusions. When several lines form a suitable configuration, as in an Ehrenstein pattern, the perceptual effect of enhanced brightness can be quite strong. Model simulations show the generation of brightness buttons. With the LGN model circuitry embedded in a larger model of preattentive vision, simulations using complex inputs show the interaction of the brightness buttons with real and illusory contours.