3 resultados para newborn morbidity
em Boston University Digital Common
Resumo:
BACKGROUND:Cardiovascular disease (CVD) and its most common manifestations - including coronary heart disease (CHD), stroke, heart failure (HF), and atrial fibrillation (AF) - are major causes of morbidity and mortality. In many industrialized countries, cardiovascular disease (CVD) claims more lives each year than any other disease. Heart disease and stroke are the first and third leading causes of death in the United States. Prior investigations have reported several single gene variants associated with CHD, stroke, HF, and AF. We report a community-based genome-wide association study of major CVD outcomes.METHODS:In 1345 Framingham Heart Study participants from the largest 310 pedigrees (54% women, mean age 33 years at entry), we analyzed associations of 70,987 qualifying SNPs (Affymetrix 100K GeneChip) to four major CVD outcomes: major atherosclerotic CVD (n = 142; myocardial infarction, stroke, CHD death), major CHD (n = 118; myocardial infarction, CHD death), AF (n = 151), and HF (n = 73). Participants free of the condition at entry were included in proportional hazards models. We analyzed model-based deviance residuals using generalized estimating equations to test associations between SNP genotypes and traits in additive genetic models restricted to autosomal SNPs with minor allele frequency [greater than or equal to]0.10, genotype call rate [greater than or equal to]0.80, and Hardy-Weinberg equilibrium p-value [greater than or equal to] 0.001.RESULTS:Six associations yielded p <10-5. The lowest p-values for each CVD trait were as follows: major CVD, rs499818, p = 6.6 x 10-6; major CHD, rs2549513, p = 9.7 x 10-6; AF, rs958546, p = 4.8 x 10-6; HF: rs740363, p = 8.8 x 10-6. Of note, we found associations of a 13 Kb region on chromosome 9p21 with major CVD (p 1.7 - 1.9 x 10-5) and major CHD (p 2.5 - 3.5 x 10-4) that confirm associations with CHD in two recently reported genome-wide association studies. Also, rs10501920 in CNTN5 was associated with AF (p = 9.4 x 10-6) and HF (p = 1.2 x 10-4). Complete results for these phenotypes can be found at the dbgap website http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?id=phs000007.CONCLUSION:No association attained genome-wide significance, but several intriguing findings emerged. Notably, we replicated associations of chromosome 9p21 with major CVD. Additional studies are needed to validate these results. Finding genetic variants associated with CVD may point to novel disease pathways and identify potential targeted preventive therapies.
Resumo:
BACKGROUND: Family studies and heritability estimates provide evidence for a genetic contribution to variation in the human life span. METHODS:We conducted a genome wide association study (Affymetrix 100K SNP GeneChip) for longevity-related traits in a community-based sample. We report on 5 longevity and aging traits in up to 1345 Framingham Study participants from 330 families. Multivariable-adjusted residuals were computed using appropriate models (Cox proportional hazards, logistic, or linear regression) and the residuals from these models were used to test for association with qualifying SNPs (70, 987 autosomal SNPs with genotypic call rate [greater than or equal to]80%, minor allele frequency [greater than or equal to]10%, Hardy-Weinberg test p [greater than or equal to] 0.001).RESULTS:In family-based association test (FBAT) models, 8 SNPs in two regions approximately 500 kb apart on chromosome 1 (physical positions 73,091,610 and 73, 527,652) were associated with age at death (p-value < 10-5). The two sets of SNPs were in high linkage disequilibrium (minimum r2 = 0.58). The top 30 SNPs for generalized estimating equation (GEE) tests of association with age at death included rs10507486 (p = 0.0001) and rs4943794 (p = 0.0002), SNPs intronic to FOXO1A, a gene implicated in lifespan extension in animal models. FBAT models identified 7 SNPs and GEE models identified 9 SNPs associated with both age at death and morbidity-free survival at age 65 including rs2374983 near PON1. In the analysis of selected candidate genes, SNP associations (FBAT or GEE p-value < 0.01) were identified for age at death in or near the following genes: FOXO1A, GAPDH, KL, LEPR, PON1, PSEN1, SOD2, and WRN. Top ranked SNP associations in the GEE model for age at natural menopause included rs6910534 (p = 0.00003) near FOXO3a and rs3751591 (p = 0.00006) in CYP19A1. Results of all longevity phenotype-genotype associations for all autosomal SNPs are web posted at http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?id=phs000007. CONCLUSION: Longevity and aging traits are associated with SNPs on the Affymetrix 100K GeneChip. None of the associations achieved genome-wide significance. These data generate hypotheses and serve as a resource for replication as more genes and biologic pathways are proposed as contributing to longevity and healthy aging.
Resumo:
Background Chronic illness and premature mortality from malaria, water-borne diseases, and respiratory illnesses have long been known to diminish the welfare of individuals and households in developing countries. Previous research has also shown that chronic diseases among farming populations suppress labor productivity and agricultural output. As the illness and death toll from HIV/AIDS continues to climb in most of sub-Saharan Africa, concern has arisen that the loss of household labor it causes will reduce crop yields, impoverish farming households, intensify malnutrition, and suppress growth in the agricultural sector. If chronic morbidity and premature mortality among individuals in farming households have substantial impacts on household production, and if a large number of households are affected, it is possible that an increase in morbidity and mortality from HIV/AIDS or other diseases could affect national aggregate output and exports. If, on the other hand, the impact at the household farm level is modest, or if relatively few households are affected, there is likely to be little effect on aggregate production across an entire country. Which of these outcomes is more likely in West Africa is unknown. Little rigorous, quantitative research has been published on the impacts of AIDS on smallholder farm production, particularly in West Africa. The handful of studies that have been conducted have looked mainly at small populations in areas of very high HIV prevalence in southern and eastern Africa. Conclusions about how HIV/AIDS, and other causes of chronic morbidity and mortality, are affecting agriculture across the continent cannot be drawn from these studies. In view of the importance of agriculture, and particularly smallholder agriculture, in the economies of most African countries and the scarcity of resources for health interventions, it is valuable to identify, describe, and quantify the impact of chronic morbidity and mortality on smallholder production of important crops in West Africa. One such crop is cocoa. In Ghana, cocoa is a crop of national importance that is produced almost exclusively by smallholder households. In 2003, Ghana was the world’s second-largest producer of cocoa. Cocoa accounted for a quarter of Ghana’s export revenues that year and generated 15 percent of employment. The success and growth of the cocoa industry is thus vital to the country’s overall social and economic development. Study Objectives and Methods In February and March 2005, the Center for International Health and Development of Boston University (CIHD) and the Department of Agricultural Economics and Agribusiness (DAEA) of the University of Ghana, with financial support from the Africa Bureau of the U.S. Agency for International Development and from Mars, Inc., which is a major purchaser of West African cocoa, conducted a survey of a random sample of cocoa farming households in the Western Region of Ghana. The survey documented the extent of chronic morbidity and mortality in cocoa growing households in the Western Region of Ghana, the country’s largest cocoa growing region, and analyzed the impact of morbidity and mortality on cocoa production. It aimed to answer three specific research questions. (1) What is the baseline status of the study population in terms of household size and composition, acute and chronic morbidity, recent mortality, and cocoa production? (2) What is the relationship between household size and cocoa production, and how can this relationship be used to understand the impact of adult mortality and chronic morbidity on the production of cocoa at the household level? The study population was the approximately 42,000 cocoa farming households in the southern part of Ghana’s Western Region. A random sample of households was selected from a roster of eligible households developed from existing administrative information. Under the supervision of the University of Ghana field team, enumerators were graduate students of the Department of Agricultural Economics and Agribusiness or employees of the Cocoa Services Division. A total of 632 eligible farmers participated in the survey. Of these, 610 provided complete responses to all questions needed to complete the multivariate statistical analysis reported here.