3 resultados para mismatch negativity
em Boston University Digital Common
Resumo:
This article develops the Synchronous Matching Adaptive Resonance Theory (SMART) neural model to explain how the brain may coordinate multiple levels of thalamocortical and corticocortical processing to rapidly learn, and stably remember, important information about a changing world. The model clarifies how bottom-up and top-down processes work together to realize this goal, notably how processes of learning, expectation, attention, resonance, and synchrony are coordinated. The model hereby clarifies, for the first time, how the following levels of brain organization coexist to realize cognitive processing properties that regulate fast learning and stable memory of brain representations: single cell properties, such as spiking dynamics, spike-timing-dependent plasticity (STDP), and acetylcholine modulation; detailed laminar thalamic and cortical circuit designs and their interactions; aggregate cell recordings, such as current-source densities and local field potentials; and single cell and large-scale inter-areal oscillations in the gamma and beta frequency domains. In particular, the model predicts how laminar circuits of multiple cortical areas interact with primary and higher-order specific thalamic nuclei and nonspecific thalamic nuclei to carry out attentive visual learning and information processing. The model simulates how synchronization of neuronal spiking occurs within and across brain regions, and triggers STDP. Matches between bottom-up adaptively filtered input patterns and learned top-down expectations cause gamma oscillations that support attention, resonance, and learning. Mismatches inhibit learning while causing beta oscillations during reset and hypothesis testing operations that are initiated in the deeper cortical layers. The generality of learned recognition codes is controlled by a vigilance process mediated by acetylcholine.
Resumo:
Recent electrophysical data inspired the claim that dopaminergic neurons adapt their mismatch sensitivities to reflect variances of expected rewards. This contradicts reward prediction error theory and most basal ganglia models. Application of learning principles points to a testable alternative interpretation-of the same data-that is compatible with existing theory.
Resumo:
We consider a mobile sensor network monitoring a spatio-temporal field. Given limited cache sizes at the sensor nodes, the goal is to develop a distributed cache management algorithm to efficiently answer queries with a known probability distribution over the spatial dimension. First, we propose a novel distributed information theoretic approach in which the nodes locally update their caches based on full knowledge of the space-time distribution of the monitored phenomenon. At each time instant, local decisions are made at the mobile nodes concerning which samples to keep and whether or not a new sample should be acquired at the current location. These decisions account for minimizing an entropic utility function that captures the average amount of uncertainty in queries given the probability distribution of query locations. Second, we propose a different correlation-based technique, which only requires knowledge of the second-order statistics, thus relaxing the stringent constraint of having a priori knowledge of the query distribution, while significantly reducing the computational overhead. It is shown that the proposed approaches considerably improve the average field estimation error by maintaining efficient cache content. It is further shown that the correlation-based technique is robust to model mismatch in case of imperfect knowledge of the underlying generative correlation structure.