4 resultados para microscopic mobility model

em Boston University Digital Common


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Personal communication devices are increasingly equipped with sensors for passive monitoring of encounters and surroundings. We envision the emergence of services that enable a community of mobile users carrying such resource-limited devices to query such information at remote locations in the field in which they collectively roam. One approach to implement such a service is directed placement and retrieval (DPR), whereby readings/queries about a specific location are routed to a node responsible for that location. In a mobile, potentially sparse setting, where end-to-end paths are unavailable, DPR is not an attractive solution as it would require the use of delay-tolerant (flooding-based store-carry-forward) routing of both readings and queries, which is inappropriate for applications with data freshness constraints, and which is incompatible with stringent device power/memory constraints. Alternatively, we propose the use of amorphous placement and retrieval (APR), in which routing and field monitoring are integrated through the use of a cache management scheme coupled with an informed exchange of cached samples to diffuse sensory data throughout the network, in such a way that a query answer is likely to be found close to the query origin. We argue that knowledge of the distribution of query targets could be used effectively by an informed cache management policy to maximize the utility of collective storage of all devices. Using a simple analytical model, we show that the use of informed cache management is particularly important when the mobility model results in a non-uniform distribution of users over the field. We present results from extensive simulations which show that in sparsely-connected networks, APR is more cost-effective than DPR, that it provides extra resilience to node failure and packet losses, and that its use of informed cache management yields superior performance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Abstract—Personal communication devices are increasingly being equipped with sensors that are able to passively collect information from their surroundings – information that could be stored in fairly small local caches. We envision a system in which users of such devices use their collective sensing, storage, and communication resources to query the state of (possibly remote) neighborhoods. The goal of such a system is to achieve the highest query success ratio using the least communication overhead (power). We show that the use of Data Centric Storage (DCS), or directed placement, is a viable approach for achieving this goal, but only when the underlying network is well connected. Alternatively, we propose, amorphous placement, in which sensory samples are cached locally and informed exchanges of cached samples is used to diffuse the sensory data throughout the whole network. In handling queries, the local cache is searched first for potential answers. If unsuccessful, the query is forwarded to one or more direct neighbors for answers. This technique leverages node mobility and caching capabilities to avoid the multi-hop communication overhead of directed placement. Using a simplified mobility model, we provide analytical lower and upper bounds on the ability of amorphous placement to achieve uniform field coverage in one and two dimensions. We show that combining informed shuffling of cached samples upon an encounter between two nodes, with the querying of direct neighbors could lead to significant performance improvements. For instance, under realistic mobility models, our simulation experiments show that amorphous placement achieves 10% to 40% better query answering ratio at a 25% to 35% savings in consumed power over directed placement.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Personal communication devices are increasingly equipped with sensors that are able to collect and locally store information from their environs. The mobility of users carrying such devices, and hence the mobility of sensor readings in space and time, opens new horizons for interesting applications. In particular, we envision a system in which the collective sensing, storage and communication resources, and mobility of these devices could be leveraged to query the state of (possibly remote) neighborhoods. Such queries would have spatio-temporal constraints which must be met for the query answers to be useful. Using a simplified mobility model, we analytically quantify the benefits from cooperation (in terms of the system's ability to satisfy spatio-temporal constraints), which we show to go beyond simple space-time tradeoffs. In managing the limited storage resources of such cooperative systems, the goal should be to minimize the number of unsatisfiable spatio-temporal constraints. We show that Data Centric Storage (DCS), or "directed placement", is a viable approach for achieving this goal, but only when the underlying network is well connected. Alternatively, we propose, "amorphous placement", in which sensory samples are cached locally, and shuffling of cached samples is used to diffuse the sensory data throughout the whole network. We evaluate conditions under which directed versus amorphous placement strategies would be more efficient. These results lead us to propose a hybrid placement strategy, in which the spatio-temporal constraints associated with a sensory data type determine the most appropriate placement strategy for that data type. We perform an extensive simulation study to evaluate the performance of directed, amorphous, and hybrid placement protocols when applied to queries that are subject to timing constraints. Our results show that, directed placement is better for queries with moderately tight deadlines, whereas amorphous placement is better for queries with looser deadlines, and that under most operational conditions, the hybrid technique gives the best compromise.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Commonly, research work in routing for delay tolerant networks (DTN) assumes that node encounters are predestined, in the sense that they are the result of unknown, exogenous processes that control the mobility of these nodes. In this paper, we argue that for many applications such an assumption is too restrictive: while the spatio-temporal coordinates of the start and end points of a node's journey are determined by exogenous processes, the specific path that a node may take in space-time, and hence the set of nodes it may encounter could be controlled in such a way so as to improve the performance of DTN routing. To that end, we consider a setting in which each mobile node is governed by a schedule consisting of a ist of locations that the node must visit at particular times. Typically, such schedules exhibit some level of slack, which could be leveraged for DTN message delivery purposes. We define the Mobility Coordination Problem (MCP) for DTNs as follows: Given a set of nodes, each with its own schedule, and a set of messages to be exchanged between these nodes, devise a set of node encounters that minimize message delivery delays while satisfying all node schedules. The MCP for DTNs is general enough that it allows us to model and evaluate some of the existing DTN schemes, including data mules and message ferries. In this paper, we show that MCP for DTNs is NP-hard and propose two detour-based approaches to solve the problem. The first (DMD) is a centralized heuristic that leverages knowledge of the message workload to suggest specific detours to optimize message delivery. The second (DNE) is a distributed heuristic that is oblivious to the message workload, and which selects detours so as to maximize node encounters. We evaluate the performance of these detour-based approaches using extensive simulations based on synthetic workloads as well as real schedules obtained from taxi logs in a major metropolitan area. Our evaluation shows that our centralized, workload-aware DMD approach yields the best performance, in terms of message delay and delivery success ratio, and that our distributed, workload-oblivious DNE approach yields favorable performance when compared to approaches that require the use of data mules and message ferries.