1 resultado para maximal subloops
em Boston University Digital Common
Filtro por publicador
- ABACUS. Repositorio de Producción Científica - Universidad Europea (2)
- Abertay Research Collections - Abertay University’s repository (1)
- Aberystwyth University Repository - Reino Unido (10)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (10)
- Aquatic Commons (9)
- Archive of European Integration (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (16)
- B-Digital - Universidade Fernando Pessoa - Portugal (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (7)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (9)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (9)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (11)
- Boston University Digital Common (1)
- Brock University, Canada (29)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (12)
- CaltechTHESIS (12)
- Cambridge University Engineering Department Publications Database (12)
- CentAUR: Central Archive University of Reading - UK (6)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (117)
- Cochin University of Science & Technology (CUSAT), India (14)
- CORA - Cork Open Research Archive - University College Cork - Ireland (3)
- Dalarna University College Electronic Archive (1)
- Department of Computer Science E-Repository - King's College London, Strand, London (9)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (3)
- Digital Commons - Michigan Tech (1)
- Digital Commons - Montana Tech (1)
- DigitalCommons@The Texas Medical Center (1)
- Diposit Digital de la UB - Universidade de Barcelona (1)
- Duke University (12)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (4)
- Greenwich Academic Literature Archive - UK (9)
- Helda - Digital Repository of University of Helsinki (20)
- Indian Institute of Science - Bangalore - Índia (102)
- Instituto Politécnico do Porto, Portugal (4)
- Massachusetts Institute of Technology (2)
- National Center for Biotechnology Information - NCBI (2)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (4)
- Publishing Network for Geoscientific & Environmental Data (23)
- QSpace: Queen's University - Canada (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (120)
- Queensland University of Technology - ePrints Archive (163)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (46)
- Research Open Access Repository of the University of East London. (3)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (3)
- SAPIENTIA - Universidade do Algarve - Portugal (2)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- SerWisS - Server für Wissenschaftliche Schriften der Fachhochschule Hannover (2)
- Universidad de Alicante (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (20)
- Université de Montréal (2)
- Université de Montréal, Canada (83)
- University of Michigan (2)
- University of Queensland eSpace - Australia (17)
- WestminsterResearch - UK (2)
- Worcester Research and Publications - Worcester Research and Publications - UK (2)
Resumo:
A secure sketch (defined by Dodis et al.) is an algorithm that on an input w produces an output s such that w can be reconstructed given its noisy version w' and s. Security is defined in terms of two parameters m and m˜ : if w comes from a distribution of entropy m, then a secure sketch guarantees that the distribution of w conditioned on s has entropy m˜ , where λ = m−m˜ is called the entropy loss. In this note we show that the entropy loss of any secure sketch (or, more generally, any randomized algorithm) on any distribution is no more than it is on the uniform distribution.