1 resultado para maximal ontological completeness
em Boston University Digital Common
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (4)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (10)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (1)
- Aquatic Commons (11)
- Archive of European Integration (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (19)
- Aston University Research Archive (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (8)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (8)
- Biblioteca Digital de la Universidad Católica Argentina (14)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (45)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (24)
- Boston University Digital Common (1)
- Brock University, Canada (3)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (19)
- CaltechTHESIS (16)
- Cambridge University Engineering Department Publications Database (18)
- CentAUR: Central Archive University of Reading - UK (21)
- Central European University - Research Support Scheme (1)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (89)
- Cochin University of Science & Technology (CUSAT), India (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (2)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (1)
- Department of Computer Science E-Repository - King's College London, Strand, London (10)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Commons - Michigan Tech (1)
- Digital Commons - Montana Tech (1)
- Digital Commons at Florida International University (1)
- DigitalCommons@The Texas Medical Center (1)
- Duke University (2)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (4)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Greenwich Academic Literature Archive - UK (3)
- Helda - Digital Repository of University of Helsinki (46)
- Indian Institute of Science - Bangalore - Índia (115)
- Línguas & Letras - Unoeste (1)
- Massachusetts Institute of Technology (1)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (2)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (1)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Publishing Network for Geoscientific & Environmental Data (23)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (24)
- Queensland University of Technology - ePrints Archive (269)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (50)
- Universidad de Alicante (2)
- Universidad Politécnica de Madrid (2)
- Universidade Complutense de Madrid (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (1)
- Université de Montréal (2)
- Université de Montréal, Canada (6)
- University of Michigan (4)
- University of Queensland eSpace - Australia (38)
- University of Southampton, United Kingdom (1)
- WestminsterResearch - UK (1)
Resumo:
A secure sketch (defined by Dodis et al.) is an algorithm that on an input w produces an output s such that w can be reconstructed given its noisy version w' and s. Security is defined in terms of two parameters m and m˜ : if w comes from a distribution of entropy m, then a secure sketch guarantees that the distribution of w conditioned on s has entropy m˜ , where λ = m−m˜ is called the entropy loss. In this note we show that the entropy loss of any secure sketch (or, more generally, any randomized algorithm) on any distribution is no more than it is on the uniform distribution.