2 resultados para isolation and identification

em Boston University Digital Common


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Material discrimination based on conventional or dual energy X-ray computed tomography (CT) imaging can be ambiguous. X-ray diffraction imaging (XDI) can be used to construct diffraction profiles of objects, providing new molecular signature information that can be used to characterize the presence of specific materials. Combining X-ray CT and diffraction imaging can lead to enhanced detection and identification of explosives in luggage screening. In this work we are investigating techniques for joint reconstruction of CT absorption and X-ray diffraction profile images of objects to achieve improved image quality and enhanced material classification. The initial results have been validated via simulation of X-ray absorption and coherent scattering in 2 dimensions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

How does the brain use eye movements to track objects that move in unpredictable directions and speeds? Saccadic eye movements rapidly foveate peripheral visual or auditory targets and smooth pursuit eye movements keep the fovea pointed toward an attended moving target. Analyses of tracking data in monkeys and humans reveal systematic deviations from predictions of the simplest model of saccade-pursuit interactions, which would use no interactions other than common target selection and recruitment of shared motoneurons. Instead, saccadic and smooth pursuit movements cooperate to cancel errors of gaze position and velocity, and thus to maximize target visibility through time. How are these two systems coordinated to promote visual localization and identification of moving targets? How are saccades calibrated to correctly foveate a target despite its continued motion during the saccade? A neural model proposes answers to such questions. The modeled interactions encompass motion processing areas MT, MST, FPA, DLPN and NRTP; saccade planning and execution areas FEF and SC; the saccadic generator in the brain stem; and the cerebellum. Simulations illustrate the model’s ability to functionally explain and quantitatively simulate anatomical, neurophysiological and behavioral data about SAC-SPEM tracking.