2 resultados para irregularities waived
em Boston University Digital Common
Resumo:
The Internet has brought unparalleled opportunities for expanding availability of research by bringing down economic and physical barriers to sharing. The digitally networked environment promises to democratize access, carry knowledge beyond traditional research niches, accelerate discovery, encourage new and interdisciplinary approaches to ever more complex research challenges, and enable new computational research strategies. However, despite these opportunities for increasing access to knowledge, the prices of scholarly journals have risen sharply over the past two decades, often forcing libraries to cancel subscriptions. Today even the wealthiest institutions cannot afford to sustain all of the journals needed by their faculties and students. To take advantage of the opportunities created by the Internet and to further their mission of creating, preserving, and disseminating knowledge, many academic institutions are taking steps to capture the benefits of more open research sharing. Colleges and universities have built digital repositories to preserve and distribute faculty scholarly articles and other research outputs. Many individual authors have taken steps to retain the rights they need, under copyright law, to allow their work to be made freely available on the Internet and in their institutionâ s repository. And, faculties at some institutions have adopted resolutions endorsing more open access to scholarly articles. Most recently, on February 12, 2008, the Faculty of Arts and Sciences (FAS) at Harvard University took a landmark step. The faculty voted to adopt a policy requiring that faculty authors send an electronic copy of their scholarly articles to the universityâ s digital repository and that faculty authors automatically grant copyright permission to the university to archive and to distribute these articles unless a faculty member has waived the policy for a particular article. Essentially, the faculty voted to make open access to the results of their published journal articles the default policy for the Faculty of Arts and Sciences of Harvard University. As of March 2008, a proposal is also under consideration in the University of California system by which faculty authors would commit routinely to grant copyright permission to the university to make copies of the facultyâ s scholarly work openly accessible over the Internet. Inspired by the example set by the Harvard faculty, this White Paper is addressed to the faculty and administrators of academic institutions who support equitable access to scholarly research and knowledge, and who believe that the institution can play an important role as steward of the scholarly literature produced by its faculty. This paper discusses both the motivation and the process for establishing a binding institutional policy that automatically grants a copyright license from each faculty member to permit deposit of his or her peer-reviewed scholarly articles in institutional repositories, from which the works become available for others to read and cite.
Resumo:
Grouping of collinear boundary contours is a fundamental process during visual perception. Illusory contour completion vividly illustrates how stable perceptual boundaries interpolate between pairs of contour inducers, but do not extrapolate from a single inducer. Neural models have simulated how perceptual grouping occurs in laminar visual cortical circuits. These models predicted the existence of grouping cells that obey a bipole property whereby grouping can occur inwardly between pairs or greater numbers of similarly oriented and co-axial inducers, but not outwardly from individual inducers. These models have not, however, incorporated spiking dynamics. Perceptual grouping is a challenge for spiking cells because its properties of collinear facilitation and analog sensitivity to inducer configurations occur despite irregularities in spike timing across all the interacting cells. Other models have demonstrated spiking dynamics in laminar neocortical circuits, but not how perceptual grouping occurs. The current model begins to unify these two modeling streams by implementing a laminar cortical network of spiking cells whose intracellular temporal dynamics interact with recurrent intercellular spiking interactions to quantitatively simulate data from neurophysiological experiments about perceptual grouping, the structure of non-classical visual receptive fields, and gamma oscillations.