4 resultados para image matching

em Boston University Digital Common


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A method is proposed that can generate a ranked list of plausible three-dimensional hand configurations that best match an input image. Hand pose estimation is formulated as an image database indexing problem, where the closest matches for an input hand image are retrieved from a large database of synthetic hand images. In contrast to previous approaches, the system can function in the presence of clutter, thanks to two novel clutter-tolerant indexing methods. First, a computationally efficient approximation of the image-to-model chamfer distance is obtained by embedding binary edge images into a high-dimensional Euclide an space. Second, a general-purpose, probabilistic line matching method identifies those line segment correspondences between model and input images that are the least likely to have occurred by chance. The performance of this clutter-tolerant approach is demonstrated in quantitative experiments with hundreds of real hand images.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modal matching is a new method for establishing correspondences and computing canonical descriptions. The method is based on the idea of describing objects in terms of generalized symmetries, as defined by each object's eigenmodes. The resulting modal description is used for object recognition and categorization, where shape similarities are expressed as the amounts of modal deformation energy needed to align the two objects. In general, modes provide a global-to-local ordering of shape deformation and thus allow for selecting which types of deformations are used in object alignment and comparison. In contrast to previous techniques, which required correspondence to be computed with an initial or prototype shape, modal matching utilizes a new type of finite element formulation that allows for an object's eigenmodes to be computed directly from available image information. This improved formulation provides greater generality and accuracy, and is applicable to data of any dimensionality. Correspondence results with 2-D contour and point feature data are shown, and recognition experiments with 2-D images of hand tools and airplanes are described.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe a method for shape-based image database search that uses deformable prototypes to represent categories. Rather than directly comparing a candidate shape with all shape entries in the database, shapes are compared in terms of the types of nonrigid deformations (differences) that relate them to a small subset of representative prototypes. To solve the shape correspondence and alignment problem, we employ the technique of modal matching, an information-preserving shape decomposition for matching, describing, and comparing shapes despite sensor variations and nonrigid deformations. In modal matching, shape is decomposed into an ordered basis of orthogonal principal components. We demonstrate the utility of this approach for shape comparison in 2-D image databases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A non-linear supervised learning architecture, the Specialized Mapping Architecture (SMA) and its application to articulated body pose reconstruction from single monocular images is described. The architecture is formed by a number of specialized mapping functions, each of them with the purpose of mapping certain portions (connected or not) of the input space, and a feedback matching process. A probabilistic model for the architecture is described along with a mechanism for learning its parameters. The learning problem is approached using a maximum likelihood estimation framework; we present Expectation Maximization (EM) algorithms for two different instances of the likelihood probability. Performance is characterized by estimating human body postures from low level visual features, showing promising results.