2 resultados para history of human resources management

em Boston University Digital Common


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The proliferation of inexpensive workstations and networks has created a new era in distributed computing. At the same time, non-traditional applications such as computer-aided design (CAD), computer-aided software engineering (CASE), geographic-information systems (GIS), and office-information systems (OIS) have placed increased demands for high-performance transaction processing on database systems. The combination of these factors gives rise to significant challenges in the design of modern database systems. In this thesis, we propose novel techniques whose aim is to improve the performance and scalability of these new database systems. These techniques exploit client resources through client-based transaction management. Client-based transaction management is realized by providing logging facilities locally even when data is shared in a global environment. This thesis presents several recovery algorithms which utilize client disks for storing recovery related information (i.e., log records). Our algorithms work with both coarse and fine-granularity locking and they do not require the merging of client logs at any time. Moreover, our algorithms support fine-granularity locking with multiple clients permitted to concurrently update different portions of the same database page. The database state is recovered correctly when there is a complex crash as well as when the updates performed by different clients on a page are not present on the disk version of the page, even though some of the updating transactions have committed. This thesis also presents the implementation of the proposed algorithms in a memory-mapped storage manager as well as a detailed performance study of these algorithms using the OO1 database benchmark. The performance results show that client-based logging is superior to traditional server-based logging. This is because client-based logging is an effective way to reduce dependencies on server CPU and disk resources and, thus, prevents the server from becoming a performance bottleneck as quickly when the number of clients accessing the database increases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The performance of different classification approaches is evaluated using a view-based approach for motion representation. The view-based approach uses computer vision and image processing techniques to register and process the video sequence. Two motion representations called Motion Energy Images and Motion History Image are then constructed. These representations collapse the temporal component in a way that no explicit temporal analysis or sequence matching is needed. Statistical descriptions are then computed using moment-based features and dimensionality reduction techniques. For these tests, we used 7 Hu moments, which are invariant to scale and translation. Principal Components Analysis is used to reduce the dimensionality of this representation. The system is trained using different subjects performing a set of examples of every action to be recognized. Given these samples, K-nearest neighbor, Gaussian, and Gaussian mixture classifiers are used to recognize new actions. Experiments are conducted using instances of eight human actions (i.e., eight classes) performed by seven different subjects. Comparisons in the performance among these classifiers under different conditions are analyzed and reported. Our main goals are to test this dimensionality-reduced representation of actions, and more importantly to use this representation to compare the advantages of different classification approaches in this recognition task.