6 resultados para hardware implementation
em Boston University Digital Common
Resumo:
Numerous problems exist that can be modeled as traffic through a network in which constraints exist to regulate flow. Vehicular road travel, computer networks, and cloud based resource distribution, among others all have natural representations in this manner. As these networks grow in size and/or complexity, analysis and certification of the safety invariants becomes increasingly costly. The NetSketch formalism introduces a lightweight verification framework that allows for greater scalability than traditional analysis methods. The NetSketch tool was developed to provide the power of this formalism in an easy to use and intuitive user interface.
Resumo:
Implementations are presented of two common algorithms for integer factorization, Pollard’s “p – 1” method and the SQUFOF method. The algorithms are implemented in the F# language, a functional programming language developed by Microsoft and officially released for the first time in 2010. The algorithms are thoroughly tested on a set of large integers (up to 64 bits in size), running both on a physical machine and a Windows Azure machine instance. Analysis of the relative performance between the two environments indicates comparable performance when taking into account the difference in computing power. Further analysis reveals that the relative performance of the Azure implementation tends to improve as the magnitudes of the integers increase, indicating that such an approach may be suitable for larger, more complex factorization tasks. Finally, several questions are presented for future research, including the performance of F# and related languages for more efficient, parallelizable algorithms, and the relative cost and performance of factorization algorithms in various environments, including physical hardware and commercial cloud computing offerings from the various vendors in the industry.
Resumo:
Coherent shared memory is a convenient, but inefficient, method of inter-process communication for parallel programs. By contrast, message passing can be less convenient, but more efficient. To get the benefits of both models, several non-coherent memory behaviors have recently been proposed in the literature. We present an implementation of Mermera, a shared memory system that supports both coherent and non-coherent behaviors in a manner that enables programmers to mix multiple behaviors in the same program[HS93]. A programmer can debug a Mermera program using coherent memory, and then improve its performance by selectively reducing the level of coherence in the parts that are critical to performance. Mermera permits a trade-off of coherence for performance. We analyze this trade-off through measurements of our implementation, and by an example that illustrates the style of programming needed to exploit non-coherence. We find that, even on a small network of workstations, the performance advantage of non-coherence is compelling. Raw non-coherent memory operations perform 20-40~times better than non-coherent memory operations. An example application program is shown to run 5-11~times faster when permitted to exploit non-coherence. We conclude by commenting on our use of the Isis Toolkit of multicast protocols in implementing Mermera.
Resumo:
Current low-level networking abstractions on modern operating systems are commonly implemented in the kernel to provide sufficient performance for general purpose applications. However, it is desirable for high performance applications to have more control over the networking subsystem to support optimizations for their specific needs. One approach is to allow networking services to be implemented at user-level. Unfortunately, this typically incurs costs due to scheduling overheads and unnecessary data copying via the kernel. In this paper, we describe a method to implement efficient application-specific network service extensions at user-level, that removes the cost of scheduling and provides protected access to lower-level system abstractions. We present a networking implementation that, with minor modifications to the Linux kernel, passes data between "sandboxed" extensions and the Ethernet device without copying or processing in the kernel. Using this mechanism, we put a customizable networking stack into a user-level sandbox and show how it can be used to efficiently process and forward data via proxies, or intermediate hosts, in the communication path of high performance data streams. Unlike other user-level networking implementations, our method makes no special hardware requirements to avoid unnecessary data copies. Results show that we achieve a substantial increase in throughput over comparable user-space methods using our networking stack implementation.
Resumo:
Statistical Rate Monotonic Scheduling (SRMS) is a generalization of the classical RMS results of Liu and Layland [LL73] for periodic tasks with highly variable execution times and statistical QoS requirements. The main tenet of SRMS is that the variability in task resource requirements could be smoothed through aggregation to yield guaranteed QoS. This aggregation is done over time for a given task and across multiple tasks for a given period of time. Similar to RMS, SRMS has two components: a feasibility test and a scheduling algorithm. SRMS feasibility test ensures that it is possible for a given periodic task set to share a given resource without violating any of the statistical QoS constraints imposed on each task in the set. The SRMS scheduling algorithm consists of two parts: a job admission controller and a scheduler. The SRMS scheduler is a simple, preemptive, fixed-priority scheduler. The SRMS job admission controller manages the QoS delivered to the various tasks through admit/reject and priority assignment decisions. In particular, it ensures the important property of task isolation, whereby tasks do not infringe on each other. In this paper we present the design and implementation of SRMS within the KURT Linux Operating System [HSPN98, SPH 98, Sri98]. KURT Linux supports conventional tasks as well as real-time tasks. It provides a mechanism for transitioning from normal Linux scheduling to a mixed scheduling of conventional and real-time tasks, and to a focused mode where only real-time tasks are scheduled. We overview the technical issues that we had to overcome in order to integrate SRMS into KURT Linux and present the API we have developed for scheduling periodic real-time tasks using SRMS.
Resumo:
An improved technique for 3D head tracking under varying illumination conditions is proposed. The head is modeled as a texture mapped cylinder. Tracking is formulated as an image registration problem in the cylinder's texture map image. The resulting dynamic texture map provides a stabilized view of the face that can be used as input to many existing 2D techniques for face recognition, facial expressions analysis, lip reading, and eye tracking. To solve the registration problem in the presence of lighting variation and head motion, the residual error of registration is modeled as a linear combination of texture warping templates and orthogonal illumination templates. Fast and stable on-line tracking is achieved via regularized, weighted least squares minimization of the registration error. The regularization term tends to limit potential ambiguities that arise in the warping and illumination templates. It enables stable tracking over extended sequences. Tracking does not require a precise initial fit of the model; the system is initialized automatically using a simple 2D face detector. The only assumption is that the target is facing the camera in the first frame of the sequence. The formulation is tailored to take advantage of texture mapping hardware available in many workstations, PC's, and game consoles. The non-optimized implementation runs at about 15 frames per second on a SGI O2 graphic workstation. Extensive experiments evaluating the effectiveness of the formulation are reported. The sensitivity of the technique to illumination, regularization parameters, errors in the initial positioning and internal camera parameters are analyzed. Examples and applications of tracking are reported.