6 resultados para german re-unification
em Boston University Digital Common
Resumo:
http://www.archive.org/details/lecturesmissions00unknuoft
Resumo:
http://www.archive.org/details/rethinkingmissio011901mbp
Resumo:
Paper presented at the Digital Humanities 2009 conference in College Park, Maryland.
Resumo:
Swiss National Science Foundation; Austrian Federal Ministry of Science and Research; Deutsche Forschungsgemeinschaft (SFB 314); Christ Church, Oxford; Oxford University Computing Laboratory
Resumo:
Various restrictions on the terms allowed for substitution give rise to different cases of semi-unification. Semi-unification on finite and regular terms has already been considered in the literature. We introduce a general case of semi-unification where substitutions are allowed on non-regular terms, and we prove the equivalence of this general case to a well-known undecidable data base dependency problem, thus establishing the undecidability of general semi-unification. We present a unified way of looking at the various problems of semi-unification. We give some properties that are common to all the cases of semi-unification. We also the principality property and the solution set for those problems. We prove that semi-unification on general terms has the principality property. Finally, we present a recursive inseparability result between semi-unification on regular terms and semi-unification on general terms.
Resumo:
We define a unification problem ^UP with the property that, given a pure lambda-term M, we can derive an instance Gamma(M) of ^UP from M such that Gamma(M) has a solution if and only if M is beta-strongly normalizable. There is a type discipline for pure lambda-terms that characterizes beta-strong normalization; this is the system of intersection types (without a "top" type that can be assigned to every lambda-term). In this report, we use a lean version LAMBDA of the usual system of intersection types. Hence, ^UP is also an appropriate unification problem to characterize typability of lambda-terms in LAMBDA. It also follows that ^UP is an undecidable problem, which can in turn be related to semi-unification and second-order unification (both known to be undecidable).