4 resultados para geometrical workspace

em Boston University Digital Common


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sonic boom propagation in a quiet) stratified) lossy atmosphere is the subject of this dissertation. Two questions are considered in detail: (1) Does waveform freezing occur? (2) Are sonic booms shocks in steady state? Both assumptions have been invoked in the past to predict sonic boom waveforms at the ground. A very general form of the Burgers equation is derived and used as the model for the problem. The derivation begins with the basic conservation equations. The effects of nonlinearity) attenuation and dispersion due to multiple relaxations) viscosity) and heat conduction) geometrical spreading) and stratification of the medium are included. When the absorption and dispersion terms are neglected) an analytical solution is available. The analytical solution is used to answer the first question. Geometrical spreading and stratification of the medium are found to slow down the nonlinear distortion of finite-amplitude waves. In certain cases the distortion reaches an absolute limit) a phenomenon called waveform freezing. Judging by the maturity of the distortion mechanism, sonic booms generated by aircraft at 18 km altitude are not frozen when they reach the ground. On the other hand, judging by the approach of the waveform to its asymptotic shape, N waves generated by aircraft at 18 km altitude are frozen when they reach the ground. To answer the second question we solve the full Burgers equation and for this purpose develop a new computer code, THOR. The code is based on an algorithm by Lee and Hamilton (J. Acoust. Soc. Am. 97, 906-917, 1995) and has the novel feature that all its calculations are done in the time domain, including absorption and dispersion. Results from the code compare very well with analytical solutions. In a NASA exercise to compare sonic boom computer programs, THOR gave results that agree well with those of other participants and ran faster. We show that sonic booms are not steady state waves because they travel through a varying medium, suffer spreading, and fail to approximate step shocks closely enough. Although developed to predict sonic boom propagation, THOR can solve other problems for which the extended Burgers equation is a good propagation model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Traditionally, slotted communication protocols have employed guard times to delineate and align slots. These guard times may expand the slot duration significantly, especially when clocks are allowed to drift for longer time to reduce clock synchronization overhead. Recently, a new class of lightweight protocols for statistical estimation in wireless sensor networks have been proposed. This new class requires very short transmission durations (jam signals), thus the traditional approach of using guard times would impose significant overhead. We propose a new, more efficient algorithm to align slots. Based on geometrical properties of space, we prove that our approach bounds the slot duration by only a constant factor of what is needed. Furthermore, we show by simulation that this bound is loose and an even smaller slot duration is required, making our approach even more efficient.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An extension to the orientational harmonic model is presented as a rotation, translation, and scale invariant representation of geometrical form in biological vision.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article describes neural network models for adaptive control of arm movement trajectories during visually guided reaching and, more generally, a framework for unsupervised real-time error-based learning. The models clarify how a child, or untrained robot, can learn to reach for objects that it sees. Piaget has provided basic insights with his concept of a circular reaction: As an infant makes internally generated movements of its hand, the eyes automatically follow this motion. A transformation is learned between the visual representation of hand position and the motor representation of hand position. Learning of this transformation eventually enables the child to accurately reach for visually detected targets. Grossberg and Kuperstein have shown how the eye movement system can use visual error signals to correct movement parameters via cerebellar learning. Here it is shown how endogenously generated arm movements lead to adaptive tuning of arm control parameters. These movements also activate the target position representations that are used to learn the visuo-motor transformation that controls visually guided reaching. The AVITE model presented here is an adaptive neural circuit based on the Vector Integration to Endpoint (VITE) model for arm and speech trajectory generation of Bullock and Grossberg. In the VITE model, a Target Position Command (TPC) represents the location of the desired target. The Present Position Command (PPC) encodes the present hand-arm configuration. The Difference Vector (DV) population continuously.computes the difference between the PPC and the TPC. A speed-controlling GO signal multiplies DV output. The PPC integrates the (DV)·(GO) product and generates an outflow command to the arm. Integration at the PPC continues at a rate dependent on GO signal size until the DV reaches zero, at which time the PPC equals the TPC. The AVITE model explains how self-consistent TPC and PPC coordinates are autonomously generated and learned. Learning of AVITE parameters is regulated by activation of a self-regulating Endogenous Random Generator (ERG) of training vectors. Each vector is integrated at the PPC, giving rise to a movement command. The generation of each vector induces a complementary postural phase during which ERG output stops and learning occurs. Then a new vector is generated and the cycle is repeated. This cyclic, biphasic behavior is controlled by a specialized gated dipole circuit. ERG output autonomously stops in such a way that, across trials, a broad sample of workspace target positions is generated. When the ERG shuts off, a modulator gate opens, copying the PPC into the TPC. Learning of a transformation from TPC to PPC occurs using the DV as an error signal that is zeroed due to learning. This learning scheme is called a Vector Associative Map, or VAM. The VAM model is a general-purpose device for autonomous real-time error-based learning and performance of associative maps. The DV stage serves the dual function of reading out new TPCs during performance and reading in new adaptive weights during learning, without a disruption of real-time operation. YAMs thus provide an on-line unsupervised alternative to the off-line properties of supervised error-correction learning algorithms. YAMs and VAM cascades for learning motor-to-motor and spatial-to-motor maps are described. YAM models and Adaptive Resonance Theory (ART) models exhibit complementary matching, learning, and performance properties that together provide a foundation for designing a total sensory-cognitive and cognitive-motor autonomous system.