2 resultados para geographic distance

em Boston University Digital Common


Relevância:

70.00% 70.00%

Publicador:

Resumo:

One relatively unexplored question about the Internet's physical structure concerns the geographical location of its components: routers, links and autonomous systems (ASes). We study this question using two large inventories of Internet routers and links, collected by different methods and about two years apart. We first map each router to its geographical location using two different state-of-the-art tools. We then study the relationship between router location and population density; between geographic distance and link density; and between the size and geographic extent of ASes. Our findings are consistent across the two datasets and both mapping methods. First, as expected, router density per person varies widely over different economic regions; however, in economically homogeneous regions, router density shows a strong superlinear relationship to population density. Second, the probability that two routers are directly connected is strongly dependent on distance; our data is consistent with a model in which a majority (up to 75-95%) of link formation is based on geographical distance (as in the Waxman topology generation method). Finally, we find that ASes show high variability in geographic size, which is correlated with other measures of AS size (degree and number of interfaces). Among small to medium ASes, ASes show wide variability in their geographic dispersal; however, all ASes exceeding a certain threshold in size are maximally dispersed geographically. These findings have many implications for the next generation of topology generators, which we envisage as producing router-level graphs annotated with attributes such as link latencies, AS identifiers and geographical locations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the problem of preprocessing a large graph so that point-to-point shortest-path queries can be answered very fast. Computing shortest paths is a well studied problem, but exact algorithms do not scale to huge graphs encountered on the web, social networks, and other applications. In this paper we focus on approximate methods for distance estimation, in particular using landmark-based distance indexing. This approach involves selecting a subset of nodes as landmarks and computing (offline) the distances from each node in the graph to those landmarks. At runtime, when the distance between a pair of nodes is needed, we can estimate it quickly by combining the precomputed distances of the two nodes to the landmarks. We prove that selecting the optimal set of landmarks is an NP-hard problem, and thus heuristic solutions need to be employed. Given a budget of memory for the index, which translates directly into a budget of landmarks, different landmark selection strategies can yield dramatically different results in terms of accuracy. A number of simple methods that scale well to large graphs are therefore developed and experimentally compared. The simplest methods choose central nodes of the graph, while the more elaborate ones select central nodes that are also far away from one another. The efficiency of the suggested techniques is tested experimentally using five different real world graphs with millions of edges; for a given accuracy, they require as much as 250 times less space than the current approach in the literature which considers selecting landmarks at random. Finally, we study applications of our method in two problems arising naturally in large-scale networks, namely, social search and community detection.