3 resultados para gene regulatory network

em Boston University Digital Common


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Identification of common sub-sequences for a group of functionally related DNA sequences can shed light on the role of such elements in cell-specific gene expression. In the megakaryocytic lineage, no one single unique transcription factor was described as linage specific, raising the possibility that a cluster of gene promoter sequences presents a unique signature. Here, the megakaryocytic gene promoter group, which consists of both human and mouse 5' non-coding regions, served as a case study. A methodology for group-combinatorial search has been implemented as a customized software platform. It extracts the longest common sequences for a group of related DNA sequences and allows for single gaps of varying length, as well as double- and multiple-gap sequences. The results point to common DNA sequences in a group of genes that is selectively expressed in megakaryocytes, and which does not appear in a large group of control, random and specific sequences. This suggests a role for a combination of these sequences in cell-specific gene expression in the megakaryocytic lineage. The data also point to an intrinsic cross-species difference in the organization of 5' non-coding sequences within the mammalian genomes. This methodology may be used for the identification of regulatory sequences in other lineages.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND:In the current climate of high-throughput computational biology, the inference of a protein's function from related measurements, such as protein-protein interaction relations, has become a canonical task. Most existing technologies pursue this task as a classification problem, on a term-by-term basis, for each term in a database, such as the Gene Ontology (GO) database, a popular rigorous vocabulary for biological functions. However, ontology structures are essentially hierarchies, with certain top to bottom annotation rules which protein function predictions should in principle follow. Currently, the most common approach to imposing these hierarchical constraints on network-based classifiers is through the use of transitive closure to predictions.RESULTS:We propose a probabilistic framework to integrate information in relational data, in the form of a protein-protein interaction network, and a hierarchically structured database of terms, in the form of the GO database, for the purpose of protein function prediction. At the heart of our framework is a factorization of local neighborhood information in the protein-protein interaction network across successive ancestral terms in the GO hierarchy. We introduce a classifier within this framework, with computationally efficient implementation, that produces GO-term predictions that naturally obey a hierarchical 'true-path' consistency from root to leaves, without the need for further post-processing.CONCLUSION:A cross-validation study, using data from the yeast Saccharomyces cerevisiae, shows our method offers substantial improvements over both standard 'guilt-by-association' (i.e., Nearest-Neighbor) and more refined Markov random field methods, whether in their original form or when post-processed to artificially impose 'true-path' consistency. Further analysis of the results indicates that these improvements are associated with increased predictive capabilities (i.e., increased positive predictive value), and that this increase is consistent uniformly with GO-term depth. Additional in silico validation on a collection of new annotations recently added to GO confirms the advantages suggested by the cross-validation study. Taken as a whole, our results show that a hierarchical approach to network-based protein function prediction, that exploits the ontological structure of protein annotation databases in a principled manner, can offer substantial advantages over the successive application of 'flat' network-based methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article presents a new method for predicting viral resistance to seven protease inhibitors from the HIV-1 genotype, and for identifying the positions in the protease gene at which the specific nature of the mutation affects resistance. The neural network Analog ARTMAP predicts protease inhibitor resistance from viral genotypes. A feature selection method detects genetic positions that contribute to resistance both alone and through interactions with other positions. This method has identified positions 35, 37, 62, and 77, where traditional feature selection methods have not detected a contribution to resistance. At several positions in the protease gene, mutations confer differing degress of resistance, depending on the specific amino acid to which the sequence has mutated. To find these positions, an Amino Acid Space is introduced to represent genes in a vector space that captures the functional similarity between amino acid pairs. Feature selection identifies several new positions, including 36, 37, and 43, with amino acid-specific contributions to resistance. Analog ARTMAP networks applied to inputs that represent specific amino acids at these positions perform better than networks that use only mutation locations.