2 resultados para gamification,gwap,qr-code,accessibilità,barriere,pervasive game

em Boston University Digital Common


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We generalize the well-known pebble game to infinite dag's, and we use this generalization to give new and shorter proofs of results in different areas of computer science (as diverse as "logic of programs" and "formal language theory"). Our applications here include a proof of a theorem due to Salomaa, asserting the existence of a context-free language with infinite index, and a proof of a theorem due to Tiuryn and Erimbetov, asserting that unbounded memory increases the power of logics of programs. The original proofs by Salomaa, Tiuryn, and Erimbetov, are fairly technical. The proofs by Tiuryn and Erimbetov also involve advanced techniques of model theory, namely, back-and-forth constructions based on a variant of Ehrenfeucht-Fraisse games. By contrast, our proofs are not only shorter, but also elementary. All we need is essentially finite induction and, in the case of the Tiuryn-Erimbetov result, the compactness and completeness of first-order logic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In college courses dealing with material that requires mathematical rigor, the adoption of a machine-readable representation for formal arguments can be advantageous. Students can focus on a specific collection of constructs that are represented consistently. Examples and counterexamples can be evaluated. Assignments can be assembled and checked with the help of an automated formal reasoning system. However, usability and accessibility do not have a high priority and are not addressed sufficiently well in the design of many existing machine-readable representations and corresponding formal reasoning systems. In earlier work [Lap09], we attempt to address this broad problem by proposing several specific design criteria organized around the notion of a natural context: the sphere of awareness a working human user maintains of the relevant constructs, arguments, experiences, and background materials necessary to accomplish the task at hand. We report on our attempt to evaluate our proposed design criteria by deploying within the classroom a lightweight formal verification system designed according to these criteria. The lightweight formal verification system was used within the instruction of a common application of formal reasoning: proving by induction formal propositions about functional code. We present all of the formal reasoning examples and assignments considered during this deployment, most of which are drawn directly from an introductory text on functional programming. We demonstrate how the design of the system improves the effectiveness and understandability of the examples, and how it aids in the instruction of basic formal reasoning techniques. We make brief remarks about the practical and administrative implications of the system’s design from the perspectives of the student, the instructor, and the grader.