1 resultado para fragment multiplicity
em Boston University Digital Common
Filtro por publicador
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (1)
- Aquatic Commons (11)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Archive of European Integration (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (14)
- Aston University Research Archive (1)
- Biblioteca Digital da Câmara dos Deputados (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (7)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (18)
- Biblioteca Digital de la Universidad Católica Argentina (6)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (46)
- Biodiversity Heritage Library, United States (1)
- Bioline International (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (32)
- Boston University Digital Common (1)
- Brock University, Canada (7)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- CaltechTHESIS (21)
- Cambridge University Engineering Department Publications Database (8)
- CentAUR: Central Archive University of Reading - UK (23)
- Center for Jewish History Digital Collections (5)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (48)
- Collection Of Biostatistics Research Archive (1)
- Department of Computer Science E-Repository - King's College London, Strand, London (2)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- DigitalCommons@The Texas Medical Center (1)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (42)
- Duke University (3)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (33)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (31)
- Harvard University (25)
- Helda - Digital Repository of University of Helsinki (43)
- Indian Institute of Science - Bangalore - Índia (137)
- INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES (IPEN) - Repositório Digital da Produção Técnico Científica - BibliotecaTerezine Arantes Ferra (1)
- Instituto Politécnico do Porto, Portugal (1)
- Línguas & Letras - Unoeste (1)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (33)
- Ohio University (15)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (1)
- Publishing Network for Geoscientific & Environmental Data (7)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (20)
- Queensland University of Technology - ePrints Archive (163)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositorio Institucional de la Universidad de Málaga (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (58)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- South Carolina State Documents Depository (2)
- Universidad Politécnica de Madrid (2)
- Universidade Complutense de Madrid (1)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade Federal do Pará (3)
- Universitat de Girona, Spain (3)
- Université de Lausanne, Switzerland (2)
- Université de Montréal (2)
- Université de Montréal, Canada (9)
- University of Connecticut - USA (1)
- University of Michigan (61)
- University of Queensland eSpace - Australia (7)
- WestminsterResearch - UK (1)
Resumo:
We study the problem of type inference for a family of polymorphic type disciplines containing the power of Core-ML. This family comprises all levels of the stratification of the second-order lambda-calculus by "rank" of types. We show that typability is an undecidable problem at every rank k ≥ 3 of this stratification. While it was already known that typability is decidable at rank ≤ 2, no direct and easy-to-implement algorithm was available. To design such an algorithm, we develop a new notion of reduction and show how to use it to reduce the problem of typability at rank 2 to the problem of acyclic semi-unification. A by-product of our analysis is the publication of a simple solution procedure for acyclic semi-unification.