2 resultados para flufenamate-sensitive electrode
em Boston University Digital Common
Resumo:
Object detection can be challenging when the object class exhibits large variations. One commonly-used strategy is to first partition the space of possible object variations and then train separate classifiers for each portion. However, with continuous spaces the partitions tend to be arbitrary since there are no natural boundaries (for example, consider the continuous range of human body poses). In this paper, a new formulation is proposed, where the detectors themselves are associated with continuous parameters, and reside in a parameterized function space. There are two advantages of this strategy. First, a-priori partitioning of the parameter space is not needed; the detectors themselves are in a parameterized space. Second, the underlying parameters for object variations can be learned from training data in an unsupervised manner. In profile face detection experiments, at a fixed false alarm number of 90, our method attains a detection rate of 75% vs. 70% for the method of Viola-Jones. In hand shape detection, at a false positive rate of 0.1%, our method achieves a detection rate of 99.5% vs. 98% for partition based methods. In pedestrian detection, our method reduces the miss detection rate by a factor of three at a false positive rate of 1%, compared with the method of Dalal-Triggs.
Resumo:
A common problem in many types of databases is retrieving the most similar matches to a query object. Finding those matches in a large database can be too slow to be practical, especially in domains where objects are compared using computationally expensive similarity (or distance) measures. This paper proposes a novel method for approximate nearest neighbor retrieval in such spaces. Our method is embedding-based, meaning that it constructs a function that maps objects into a real vector space. The mapping preserves a large amount of the proximity structure of the original space, and it can be used to rapidly obtain a short list of likely matches to the query. The main novelty of our method is that it constructs, together with the embedding, a query-sensitive distance measure that should be used when measuring distances in the vector space. The term "query-sensitive" means that the distance measure changes depending on the current query object. We report experiments with an image database of handwritten digits, and a time-series database. In both cases, the proposed method outperforms existing state-of-the-art embedding methods, meaning that it provides significantly better trade-offs between efficiency and retrieval accuracy.