2 resultados para factorization method

em Boston University Digital Common


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A method for reconstructing 3D rational B-spline surfaces from multiple views is proposed. The method takes advantage of the projective invariance properties of rational B-splines. Given feature correspondences in multiple views, the 3D surface is reconstructed via a four step framework. First, corresponding features in each view are given an initial surface parameter value (s; t), and a 2D B-spline is fitted in each view. After this initialization, an iterative minimization procedure alternates between updating the 2D B-spline control points and re-estimating each feature's (s; t). Next, a non-linear minimization method is used to upgrade the 2D B-splines to 2D rational B-splines, and obtain a better fit. Finally, a factorization method is used to reconstruct the 3D B-spline surface given 2D B-splines in each view. This surface recovery method can be applied in both the perspective and orthographic case. The orthographic case allows the use of additional constraints in the recovery. Experiments with real and synthetic imagery demonstrate the efficacy of the approach for the orthographic case.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Implementations are presented of two common algorithms for integer factorization, Pollard’s “p – 1” method and the SQUFOF method. The algorithms are implemented in the F# language, a functional programming language developed by Microsoft and officially released for the first time in 2010. The algorithms are thoroughly tested on a set of large integers (up to 64 bits in size), running both on a physical machine and a Windows Azure machine instance. Analysis of the relative performance between the two environments indicates comparable performance when taking into account the difference in computing power. Further analysis reveals that the relative performance of the Azure implementation tends to improve as the magnitudes of the integers increase, indicating that such an approach may be suitable for larger, more complex factorization tasks. Finally, several questions are presented for future research, including the performance of F# and related languages for more efficient, parallelizable algorithms, and the relative cost and performance of factorization algorithms in various environments, including physical hardware and commercial cloud computing offerings from the various vendors in the industry.