3 resultados para environment (Aesthetics)

em Boston University Digital Common


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A report of key findings of the Cloud Library project, an effort jointly designed and executed by OCLC Research, the HathiTrust, New York University's Elmer Bobst Library, and the Research Collections Access & Preservation (ReCAP) consortium, with support from the The Andrew W. Mellon Foundation. The objective of the project was to examine the feasibility of outsourcing management of low-use print books held in academic libraries to shared service providers, including large-scale print and digital repositories.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

End-to-End differentiation between wireless and congestion loss can equip TCP control so it operates effectively in a hybrid wired/wireless environment. Our approach integrates two techniques: packet loss pairs (PLP) and Hidden Markov Modeling (HMM). A packet loss pair is formed by two back-to-back packets, where one packet is lost while the second packet is successfully received. The purpose is for the second packet to carry the state of the network path, namely the round trip time (RTT), at the time the other packet is lost. Under realistic conditions, PLP provides strong differentiation between congestion and wireless type of loss based on distinguishable RTT distributions. An HMM is then trained so observed RTTs can be mapped to model states that represent either congestion loss or wireless loss. Extensive simulations confirm the accuracy of our HMM-based technique in classifying the cause of a packet loss. We also show the superiority of our technique over the Vegas predictor, which was recently found to perform best and which exemplifies other existing loss labeling techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The SNBENCH is a general-purpose programming environment and run-time system targeted towards a variety of Sensor applications such as environmental sensing, location sensing, video sensing, etc. In its current structure, the run-time engine of the SNBENCH namely, the Sensorium Execution Environment (SXE) processes the entities of execution in a single thread of operation. In order to effectively support applications that are time-sensitive and need priority, it is imperative to process the tasks discretely so that specific policies can be applied at a much granular level. The goal of this project was to modify the SXE to enable efficient use of system resources by way of multi-tasking the individual components. Additionally, the transformed SXE offers the ability to classify and employ different schemes of processing to the individual tasks.