2 resultados para distribution of wealth
em Boston University Digital Common
Resumo:
This paper explores reasons for the high degree of variability in the sizes of ASes that have recently been observed, and the processes by which this variable distribution develops. AS size distribution is important for a number of reasons. First, when modeling network topologies, an AS size distribution assists in labeling routers with an associated AS. Second, AS size has been found to be positively correlated with the degree of the AS (number of peering links), so understanding the distribution of AS sizes has implications for AS connectivity properties. Our model accounts for AS births, growth, and mergers. We analyze two models: one incorporates only the growth of hosts and ASes, and a second extends that model to include mergers of ASes. We show analytically that, given reasonable assumptions about the nature of mergers, the resulting size distribution exhibits a power law tail with the exponent independent of the details of the merging process. We estimate parameters of the models from measurements obtained from Internet registries and from BGP tables. We then compare the models solutions to empirical AS size distribution taken from Mercator and Skitter datasets, and find that the simple growth-based model yields general agreement with empirical data. Our analysis of the model in which mergers occur in a manner independent of the size of the merging ASes suggests that more detailed analysis of merger processes is needed.
Resumo:
This paper presents the design and implementation of an infrastructure that enables any Web application, regardless of its current state, to be stopped and uninstalled from a particular server, transferred to a new server, then installed, loaded, and resumed, with all these events occurring "on the fly" and totally transparent to clients. Such functionalities allow entire applications to fluidly move from server to server, reducing the overhead required to administer the system, and increasing its performance in a number of ways: (1) Dynamic replication of new instances of applications to several servers to raise throughput for scalability purposes, (2) Moving applications to servers to achieve load balancing or other resource management goals, (3) Caching entire applications on servers located closer to clients.