1 resultado para digital signal processor
em Boston University Digital Common
Filtro por publicador
- Repository Napier (1)
- Academic Archive On-line (Mid Sweden University; Sweden) (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (3)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (7)
- Aquatic Commons (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (2)
- Aston University Research Archive (52)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (5)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (2)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (6)
- Boston University Digital Common (1)
- Brock University, Canada (1)
- Bucknell University Digital Commons - Pensilvania - USA (8)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- Cambridge University Engineering Department Publications Database (23)
- CentAUR: Central Archive University of Reading - UK (22)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (13)
- Cochin University of Science & Technology (CUSAT), India (11)
- CORA - Cork Open Research Archive - University College Cork - Ireland (7)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Commons - Michigan Tech (2)
- Digital Commons - Montana Tech (3)
- Digital Commons @ DU | University of Denver Research (3)
- Digital Commons at Florida International University (21)
- Digital Peer Publishing (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- DRUM (Digital Repository at the University of Maryland) (5)
- Duke University (1)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (2)
- Indian Institute of Science - Bangalore - Índia (40)
- Instituto Politécnico do Porto, Portugal (1)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (4)
- Massachusetts Institute of Technology (3)
- National Center for Biotechnology Information - NCBI (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (66)
- Queensland University of Technology - ePrints Archive (392)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (3)
- Repositorio de la Universidad de Cuenca (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (6)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (59)
- Research Open Access Repository of the University of East London. (2)
- SAPIENTIA - Universidade do Algarve - Portugal (4)
- School of Medicine, Washington University, United States (7)
- Universidad Politécnica de Madrid (41)
- Universidade Complutense de Madrid (1)
- Universidade Federal do Pará (8)
- Universidade Federal do Rio Grande do Norte (UFRN) (18)
- Universidade Metodista de São Paulo (1)
- Universita di Parma (1)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (2)
- Université de Montréal, Canada (2)
- Université Laval Mémoires et thèses électroniques (2)
- University of Michigan (6)
- University of Queensland eSpace - Australia (2)
- University of Washington (1)
- WestminsterResearch - UK (11)
Resumo:
World-Wide Web (WWW) services have grown to levels where significant delays are expected to happen. Techniques like pre-fetching are likely to help users to personalize their needs, reducing their waiting times. However, pre-fetching is only effective if the right documents are identified and if user's move is correctly predicted. Otherwise, pre-fetching will only waste bandwidth. Therefore, it is productive to determine whether a revisit will occur or not, before starting pre-fetching. In this paper we develop two user models that help determining user's next move. One model uses Random Walk approximation and the other is based on Digital Signal Processing techniques. We also give hints on how to use such models with a simple pre-fetching technique that we are developing.