1 resultado para cut vertex false positive
em Boston University Digital Common
Filtro por publicador
- Repository Napier (1)
- ABACUS. Repositorio de Producción Científica - Universidad Europea (1)
- Aberdeen University (2)
- Aberystwyth University Repository - Reino Unido (4)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (4)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Aquatic Commons (15)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (3)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (4)
- Aston University Research Archive (10)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (14)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (8)
- Biblioteca Digital de la Universidad Católica Argentina (3)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (7)
- Bioline International (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (55)
- Boston University Digital Common (1)
- Brock University, Canada (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- CaltechTHESIS (9)
- Cambridge University Engineering Department Publications Database (39)
- CentAUR: Central Archive University of Reading - UK (17)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (67)
- Collection Of Biostatistics Research Archive (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (7)
- Dalarna University College Electronic Archive (2)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (4)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (5)
- DigitalCommons@The Texas Medical Center (12)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- DRUM (Digital Repository at the University of Maryland) (3)
- Duke University (14)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (26)
- FAUBA DIGITAL: Repositorio institucional científico y académico de la Facultad de Agronomia de la Universidad de Buenos Aires (1)
- Greenwich Academic Literature Archive - UK (4)
- Helda - Digital Repository of University of Helsinki (31)
- Indian Institute of Science - Bangalore - Índia (73)
- Instituto Nacional de Saúde de Portugal (1)
- Instituto Politécnico de Bragança (1)
- Instituto Politécnico do Porto, Portugal (1)
- Massachusetts Institute of Technology (2)
- National Center for Biotechnology Information - NCBI (5)
- Nottingham eTheses (3)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (2)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (132)
- Queensland University of Technology - ePrints Archive (198)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (2)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositorio Institucional de la Universidad Pública de Navarra - Espanha (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (45)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (2)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- School of Medicine, Washington University, United States (1)
- Universidad del Rosario, Colombia (3)
- Universidad Politécnica de Madrid (5)
- Universidade Complutense de Madrid (2)
- Universidade Federal do Pará (3)
- Universidade Federal do Rio Grande do Norte (UFRN) (4)
- Universidade Técnica de Lisboa (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (6)
- Université de Montréal, Canada (6)
- University of Queensland eSpace - Australia (12)
- University of Washington (2)
- WestminsterResearch - UK (1)
Resumo:
Object detection can be challenging when the object class exhibits large variations. One commonly-used strategy is to first partition the space of possible object variations and then train separate classifiers for each portion. However, with continuous spaces the partitions tend to be arbitrary since there are no natural boundaries (for example, consider the continuous range of human body poses). In this paper, a new formulation is proposed, where the detectors themselves are associated with continuous parameters, and reside in a parameterized function space. There are two advantages of this strategy. First, a-priori partitioning of the parameter space is not needed; the detectors themselves are in a parameterized space. Second, the underlying parameters for object variations can be learned from training data in an unsupervised manner. In profile face detection experiments, at a fixed false alarm number of 90, our method attains a detection rate of 75% vs. 70% for the method of Viola-Jones. In hand shape detection, at a false positive rate of 0.1%, our method achieves a detection rate of 99.5% vs. 98% for partition based methods. In pedestrian detection, our method reduces the miss detection rate by a factor of three at a false positive rate of 1%, compared with the method of Dalal-Triggs.