9 resultados para computer forensics, digital evidence, computer profiling, time-lining, temporal inconsistency, computer forensic object model

em Boston University Digital Common


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Personal communication devices are increasingly equipped with sensors that are able to collect and locally store information from their environs. The mobility of users carrying such devices, and hence the mobility of sensor readings in space and time, opens new horizons for interesting applications. In particular, we envision a system in which the collective sensing, storage and communication resources, and mobility of these devices could be leveraged to query the state of (possibly remote) neighborhoods. Such queries would have spatio-temporal constraints which must be met for the query answers to be useful. Using a simplified mobility model, we analytically quantify the benefits from cooperation (in terms of the system's ability to satisfy spatio-temporal constraints), which we show to go beyond simple space-time tradeoffs. In managing the limited storage resources of such cooperative systems, the goal should be to minimize the number of unsatisfiable spatio-temporal constraints. We show that Data Centric Storage (DCS), or "directed placement", is a viable approach for achieving this goal, but only when the underlying network is well connected. Alternatively, we propose, "amorphous placement", in which sensory samples are cached locally, and shuffling of cached samples is used to diffuse the sensory data throughout the whole network. We evaluate conditions under which directed versus amorphous placement strategies would be more efficient. These results lead us to propose a hybrid placement strategy, in which the spatio-temporal constraints associated with a sensory data type determine the most appropriate placement strategy for that data type. We perform an extensive simulation study to evaluate the performance of directed, amorphous, and hybrid placement protocols when applied to queries that are subject to timing constraints. Our results show that, directed placement is better for queries with moderately tight deadlines, whereas amorphous placement is better for queries with looser deadlines, and that under most operational conditions, the hybrid technique gives the best compromise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates the power of genetic algorithms at solving the MAX-CLIQUE problem. We measure the performance of a standard genetic algorithm on an elementary set of problem instances consisting of embedded cliques in random graphs. We indicate the need for improvement, and introduce a new genetic algorithm, the multi-phase annealed GA, which exhibits superior performance on the same problem set. As we scale up the problem size and test on \hard" benchmark instances, we notice a degraded performance in the algorithm caused by premature convergence to local minima. To alleviate this problem, a sequence of modi cations are implemented ranging from changes in input representation to systematic local search. The most recent version, called union GA, incorporates the features of union cross-over, greedy replacement, and diversity enhancement. It shows a marked speed-up in the number of iterations required to find a given solution, as well as some improvement in the clique size found. We discuss issues related to the SIMD implementation of the genetic algorithms on a Thinking Machines CM-5, which was necessitated by the intrinsically high time complexity (O(n3)) of the serial algorithm for computing one iteration. Our preliminary conclusions are: (1) a genetic algorithm needs to be heavily customized to work "well" for the clique problem; (2) a GA is computationally very expensive, and its use is only recommended if it is known to find larger cliques than other algorithms; (3) although our customization e ort is bringing forth continued improvements, there is no clear evidence, at this time, that a GA will have better success in circumventing local minima.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of TCP's critical tasks is to determine which packets are lost in the network, as a basis for control actions (flow control and packet retransmission). Modern TCP implementations use two mechanisms: timeout, and fast retransmit. Detection via timeout is necessarily a time-consuming operation; fast retransmit, while much quicker, is only effective for a small fraction of packet losses. In this paper we consider the problem of packet loss detection in TCP more generally. We concentrate on the fact that TCP's control actions are necessarily triggered by inference of packet loss, rather than conclusive knowledge. This suggests that one might analyze TCP's packet loss detection in a standard inferencing framework based on probability of detection and probability of false alarm. This paper makes two contributions to that end: First, we study an example of more general packet loss inference, namely optimal Bayesian packet loss detection based on round trip time. We show that for long-lived flows, it is frequently possible to achieve high detection probability and low false alarm probability based on measured round trip time. Second, we construct an analytic performance model that incorporates general packet loss inference into TCP. We show that for realistic detection and false alarm probabilities (as are achievable via our Bayesian detector) and for moderate packet loss rates, the use of more general packet loss inference in TCP can improve throughput by as much as 25%.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Load balancing is often used to ensure that nodes in a distributed systems are equally loaded. In this paper, we show that for real-time systems, load balancing is not desirable. In particular, we propose a new load-profiling strategy that allows the nodes of a distributed system to be unequally loaded. Using load profiling, the system attempts to distribute the load amongst its nodes so as to maximize the chances of finding a node that would satisfy the computational needs of incoming real-time tasks. To that end, we describe and evaluate a distributed load-profiling protocol for dynamically scheduling time-constrained tasks in a loosely-coupled distributed environment. When a task is submitted to a node, the scheduling software tries to schedule the task locally so as to meet its deadline. If that is not feasible, it tries to locate another node where this could be done with a high probability of success, while attempting to maintain an overall load profile for the system. Nodes in the system inform each other about their state using a combination of multicasting and gossiping. The performance of the proposed protocol is evaluated via simulation, and is contrasted to other dynamic scheduling protocols for real-time distributed systems. Based on our findings, we argue that keeping a diverse availability profile and using passive bidding (through gossiping) are both advantageous to distributed scheduling for real-time systems.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

High-speed networks, such as ATM networks, are expected to support diverse Quality of Service (QoS) constraints, including real-time QoS guarantees. Real-time QoS is required by many applications such as those that involve voice and video communication. To support such services, routing algorithms that allow applications to reserve the needed bandwidth over a Virtual Circuit (VC) have been proposed. Commonly, these bandwidth-reservation algorithms assign VCs to routes using the least-loaded concept, and thus result in balancing the load over the set of all candidate routes. In this paper, we show that for such reservation-based protocols|which allow for the exclusive use of a preset fraction of a resource's bandwidth for an extended period of time-load balancing is not desirable as it results in resource fragmentation, which adversely affects the likelihood of accepting new reservations. In particular, we show that load-balancing VC routing algorithms are not appropriate when the main objective of the routing protocol is to increase the probability of finding routes that satisfy incoming VC requests, as opposed to equalizing the bandwidth utilization along the various routes. We present an on-line VC routing scheme that is based on the concept of "load profiling", which allows a distribution of "available" bandwidth across a set of candidate routes to match the characteristics of incoming VC QoS requests. We show the effectiveness of our load-profiling approach when compared to traditional load-balancing and load-packing VC routing schemes.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

To support the diverse Quality of Service (QoS) requirements of real-time (e.g. audio/video) applications in integrated services networks, several routing algorithms that allow for the reservation of the needed bandwidth over a Virtual Circuit (VC) established on one of several candidate routes have been proposed. Traditionally, such routing is done using the least-loaded concept, and thus results in balancing the load across the set of candidate routes. In a recent study, we have established the inadequacy of this load balancing practice and proposed the use of load profiling as an alternative. Load profiling techniques allow the distribution of "available" bandwidth across a set of candidate routes to match the characteristics of incoming VC QoS requests. In this paper we thoroughly characterize the performance of VC routing using load profiling and contrast it to routing using load balancing and load packing. We do so both analytically and via extensive simulations of multi-class traffic routing in Virtual Path (VP) based networks. Our findings confirm that for routing guaranteed bandwidth flows in VP networks, load balancing is not desirable as it results in VP bandwidth fragmentation, which adversely affects the likelihood of accepting new VC requests. This fragmentation is more pronounced when the granularity of VC requests is large. Typically, this occurs when a common VC is established to carry the aggregate traffic flow of many high-bandwidth real-time sources. For VP-based networks, our simulation results show that our load-profiling VC routing scheme performs better or as well as the traditional load-balancing VC routing in terms of revenue under both skewed and uniform workloads. Furthermore, load-profiling routing improves routing fairness by proactively increasing the chances of admitting high-bandwidth connections.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In a recent paper (Changes in Web Client Access Patterns: Characteristics and Caching Implications by Barford, Bestavros, Bradley, and Crovella) we performed a variety of analyses upon user traces collected in the Boston University Computer Science department in 1995 and 1998. A sanitized version of the 1995 trace has been publicly available for some time; the 1998 trace has now been sanitized, and is available from: http://www.cs.bu.edu/techreports/1999-011-usertrace-98.gz ftp://ftp.cs.bu.edu/techreports/1999-011-usertrace-98.gz This memo discusses the format of this public version of the log, and includes additional discussion of how the data was collected, how the log was sanitized, what this log is and is not useful for, and areas of potential future research interest.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

SomeCast is a novel paradigm for the reliable multicast of real-time data to a large set of receivers over the Internet. SomeCast is receiver-initiated and thus scalable in the number of receivers, the diverse characteristics of paths between senders and receivers (e.g. maximum bandwidth and round-trip-time), and the dynamic conditions of such paths (e.g. congestion-induced delays and losses). SomeCast enables receivers to dynamically adjust the rate at which they receive multicast information to enable the satisfaction of real-time QoS constraints (e.g. rate, deadlines, or jitter). This is done by enabling a receiver to join SOME number of concurrent multiCAST sessions, whereby each session delivers a portion of an encoding of the real-time data. By adjusting the number of such sessions dynamically, client-specific QoS constraints can be met independently. The SomeCast paradigm can be thought of as a generalization of the AnyCast (e.g. Dynamic Server Selection) and ManyCast (e.g. Digital Fountain) paradigms, which have been proposed in the literature to address issues of scalability of UniCast and MultiCast environments, respectively. In this paper we overview the SomeCast paradigm, describe an instance of a SomeCast protocol, and present simulation results that quantify the significant advantages gained from adopting such a protocol for the reliable multicast of data to a diverse set of receivers subject to real-time QoS constraints.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Accurate head tilt detection has a large potential to aid people with disabilities in the use of human-computer interfaces and provide universal access to communication software. We show how it can be utilized to tab through links on a web page or control a video game with head motions. It may also be useful as a correction method for currently available video-based assistive technology that requires upright facial poses. Few of the existing computer vision methods that detect head rotations in and out of the image plane with reasonable accuracy can operate within the context of a real-time communication interface because the computational expense that they incur is too great. Our method uses a variety of metrics to obtain a robust head tilt estimate without incurring the computational cost of previous methods. Our system runs in real time on a computer with a 2.53 GHz processor, 256 MB of RAM and an inexpensive webcam, using only 55% of the processor cycles.