2 resultados para componentwise ultimate bounds
em Boston University Digital Common
Resumo:
We prove several new lower bounds for constant depth quantum circuits. The main result is that parity (and hence fanout) requires log depth circuits, when the circuits are composed of single qubit and arbitrary size Toffoli gates, and when they use only constantly many ancillae. Under this constraint, this bound is close to optimal. In the case of a non-constant number of ancillae, we give a tradeoff between the number of ancillae and the required depth.
Resumo:
We show that if a language is recognized within certain error bounds by constant-depth quantum circuits over a finite family of gates, then it is computable in (classical) polynomial time. In particular, our results imply EQNC^0 ⊆ P, where EQNC^0 is the constant-depth analog of the class EQP. On the other hand, we adapt and extend ideas of Terhal and DiVincenzo [?] to show that, for any family