7 resultados para common variable immunodeficiency
em Boston University Digital Common
Resumo:
PDF file
Resumo:
Objectives: “Tooth Smart Healthy Start” is a randomized clinical trial which aims to reduce the incidence of early childhood caries (ECC) in Boston public housing residents as part of the NIH funded Northeast Center for Research to Evaluate and Eliminate Dental Disparities. The purpose of this project was to assess public housing stakeholders' perception of the oral health needs of public housing residents and their interest in replicating “Tooth Smart Healthy Start” in other public housing sites across the nation. Methods: The target population was the 180 attendees of the 2010 meeting of the Health Care for Residents of Public Housing National Conference. A ten question survey which assessed conference attendees' beliefs about oral health and its importance to public housing residents was distributed. Data was analyzed using SAS 9.1. Descriptive statistics were calculated for each variable and results were stratified by participants' roles. Results: Thirty percent of conference attendees completed the survey. The participants consisted of residents, agency representatives, and housing authority personnel. When asked to rank health issues facing public housing residents, oral health was rated as most important (42%) or top three (16%) by residents. The agency representatives and housing authority personnel rated oral health among the top three (33% and 58% respectively) and top five (36% and 25% respectively). When participants ranked the three greatest resident health needs out of eight choices, oral health was the most common response. Majority of the participants expressed interest in replicating the “Tooth Smart Healthy Start” program at their sites. Conclusion: All stakeholder groups identified oral health as one of the greatest health needs of residents in public housing. Furthermore, if shown to reduce ECC, there is significant interest in implementing the program amongst key public housing stakeholders across the nation.
Resumo:
Recent studies have noted that vertex degree in the autonomous system (AS) graph exhibits a highly variable distribution [15, 22]. The most prominent explanatory model for this phenomenon is the Barabási-Albert (B-A) model [5, 2]. A central feature of the B-A model is preferential connectivity—meaning that the likelihood a new node in a growing graph will connect to an existing node is proportional to the existing node’s degree. In this paper we ask whether a more general explanation than the B-A model, and absent the assumption of preferential connectivity, is consistent with empirical data. We are motivated by two observations: first, AS degree and AS size are highly correlated [11]; and second, highly variable AS size can arise simply through exponential growth. We construct a model incorporating exponential growth in the size of the Internet, and in the number of ASes. We then show via analysis that such a model yields a size distribution exhibiting a power-law tail. In such a model, if an AS’s link formation is roughly proportional to its size, then AS degree will also show high variability. We instantiate such a model with empirically derived estimates of growth rates and show that the resulting degree distribution is in good agreement with that of real AS graphs.
Resumo:
We revisit the problem of connection management for reliable transport. At one extreme, a pure soft-state (SS) approach (as in Delta-t [9]) safely removes the state of a connection at the sender and receiver once the state timers expire without the need for explicit removal messages. And new connections are established without an explicit handshaking phase. On the other hand, a hybrid hard-state/soft-state (HS+SS) approach (as in TCP) uses both explicit handshaking as well as timer-based management of the connection’s state. In this paper, we consider the worst-case scenario of reliable single-message communication, and develop a common analytical model that can be instantiated to capture either the SS approach or the HS+SS approach. We compare the two approaches in terms of goodput, message and state overhead. We also use simulations to compare against other approaches, and evaluate them in terms of correctness (with respect to data loss and duplication) and robustness to bad network conditions (high message loss rate and variable channel delays). Our results show that the SS approach is more robust, and has lower message overhead. On the other hand, SS requires more memory to keep connection states, which reduces goodput. Given memories are getting bigger and cheaper, SS presents the best choice over bandwidth-constrained, error-prone networks.
Resumo:
In work that involves mathematical rigor, there are numerous benefits to adopting a representation of models and arguments that can be supplied to a formal reasoning or verification system: reusability, automatic evaluation of examples, and verification of consistency and correctness. However, accessibility has not been a priority in the design of formal verification tools that can provide these benefits. In earlier work [Lap09a], we attempt to address this broad problem by proposing several specific design criteria organized around the notion of a natural context: the sphere of awareness a working human user maintains of the relevant constructs, arguments, experiences, and background materials necessary to accomplish the task at hand. This work expands one aspect of the earlier work by considering more extensively an essential capability for any formal reasoning system whose design is oriented around simulating the natural context: native support for a collection of mathematical relations that deal with common constructs in arithmetic and set theory. We provide a formal definition for a context of relations that can be used to both validate and assist formal reasoning activities. We provide a proof that any algorithm that implements this formal structure faithfully will necessary converge. Finally, we consider the efficiency of an implementation of this formal structure that leverages modular implementations of well-known data structures: balanced search trees and transitive closures of hypergraphs.
Resumo:
This paper proposes a method for detecting shapes of variable structure in images with clutter. The term "variable structure" means that some shape parts can be repeated an arbitrary number of times, some parts can be optional, and some parts can have several alternative appearances. The particular variation of the shape structure that occurs in a given image is not known a priori. Existing computer vision methods, including deformable model methods, were not designed to detect shapes of variable structure; they may only be used to detect shapes that can be decomposed into a fixed, a priori known, number of parts. The proposed method can handle both variations in shape structure and variations in the appearance of individual shape parts. A new class of shape models is introduced, called Hidden State Shape Models, that can naturally represent shapes of variable structure. A detection algorithm is described that finds instances of such shapes in images with large amounts of clutter by finding globally optimal correspondences between image features and shape models. Experiments with real images demonstrate that our method can localize plant branches that consist of an a priori unknown number of leaves and can detect hands more accurately than a hand detector based on the chamfer distance.
Resumo:
Speech can be understood at widely varying production rates. A working memory is described for short-term storage of temporal lists of input items. The working memory is a cooperative-competitive neural network that automatically adjusts its integration rate, or gain, to generate a short-term memory code for a list that is independent of item presentation rate. Such an invariant working memory model is used to simulate data of Repp (1980) concerning the changes of phonetic category boundaries as a function of their presentation rate. Thus the variability of categorical boundaries can be traced to the temporal in variance of the working memory code.