3 resultados para client confidentiality and privacy

em Boston University Digital Common


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a novel protocol which uses the Internet Domain Name System (DNS) to partition Web clients into disjoint sets, each of which is associated with a single DNS server. We define an L-DNS cluster to be a grouping of Web Clients that use the same Local DNS server to resolve Internet host names. We identify such clusters in real-time using data obtained from a Web Server in conjunction with that server's Authoritative DNS―both instrumented with an implementation of our clustering algorithm. Using these clusters, we perform measurements from four distinct Internet locations. Our results show that L-DNS clustering enables a better estimation of proximity of a Web Client to a Web Server than previously proposed techniques. Thus, in a Content Distribution Network, a DNS-based scheme that redirects a request from a web client to one of many servers based on the client's name server coordinates (e.g., hops/latency/loss-rates between the client and servers) would perform better with our algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the problem of delivering popular streaming media to a large number of asynchronous clients. We propose and evaluate a cache-and-relay end-system multicast approach, whereby a client joining a multicast session caches the stream, and if needed, relays that stream to neighboring clients which may join the multicast session at some later time. This cache-and-relay approach is fully distributed, scalable, and efficient in terms of network link cost. In this paper we analytically derive bounds on the network link cost of our cache-and-relay approach, and we evaluate its performance under assumptions of limited client bandwidth and limited client cache capacity. When client bandwidth is limited, we show that although finding an optimal solution is NP-hard, a simple greedy algorithm performs surprisingly well in that it incurs network link costs that are very close to a theoretical lower bound. When client cache capacity is limited, we show that our cache-and-relay approach can still significantly reduce network link cost. We have evaluated our cache-and-relay approach using simulations over large, synthetic random networks, power-law degree networks, and small-world networks, as well as over large real router-level Internet maps.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Understanding the nature of the workloads and system demands created by users of the World Wide Web is crucial to properly designing and provisioning Web services. Previous measurements of Web client workloads have been shown to exhibit a number of characteristic features; however, it is not clear how those features may be changing with time. In this study we compare two measurements of Web client workloads separated in time by three years, both captured from the same computing facility at Boston University. The older dataset, obtained in 1995, is well-known in the research literature and has been the basis for a wide variety of studies. The newer dataset was captured in 1998 and is comparable in size to the older dataset. The new dataset has the drawback that the collection of users measured may no longer be representative of general Web users; however using it has the advantage that many comparisons can be drawn more clearly than would be possible using a new, different source of measurement. Our results fall into two categories. First we compare the statistical and distributional properties of Web requests across the two datasets. This serves to reinforce and deepen our understanding of the characteristic statistical properties of Web client requests. We find that the kinds of distributions that best describe document sizes have not changed between 1995 and 1998, although specific values of the distributional parameters are different. Second, we explore the question of how the observed differences in the properties of Web client requests, particularly the popularity and temporal locality properties, affect the potential for Web file caching in the network. We find that for the computing facility represented by our traces between 1995 and 1998, (1) the benefits of using size-based caching policies have diminished; and (2) the potential for caching requested files in the network has declined.