7 resultados para challenge hypothesis
em Boston University Digital Common
Resumo:
University of Pretoria / MA Dissertation / Department of Practical Theology / Advised by Prof M J S Masango
Resumo:
This paper attempts two tasks. First, it sketches how the natural sciences (including especially the biological sciences), the social sciences, and the scientific study of religion can be understood to furnish complementary, consonant perspectives on human beings and human groups. This suggests that it is possible to speak of a modern secular interpretation of humanity (MSIH) to which these perspectives contribute (though not without tensions). MSIH is not a comprehensive interpretation of human beings, if only because it adopts a posture of neutrality with regard to the reality of religious objects and the truth of theological claims about them. MSIH is certainly an impressively forceful interpretation, however, and it needs to be reckoned with by any perspective on human life that seeks to insert its truth claims into the arena of public debate. Second, the paper considers two challenges that MSIH poses to specifically theological interpretations of human beings. On the one hand, in spite of its posture of religious neutrality, MSIH is a key element in a class of wider, seemingly antireligious interpretations of humanity, including especially projectionist and illusionist critiques of religion. It is consonance with MSIH that makes these critiques such formidable competitors for traditional theological interpretations of human beings. On the other hand, and taking the religiously neutral posture of MSIH at face value, theological accounts of humanity that seek to coordinate the insights of MSIH with positive religious visions of human life must find ways to overcome or manage such dissonance as arises. The goal of synthesis is defended as important, and strategies for managing these challenges, especially in light of the pluralism of extant philosophical and theological interpretations of human beings, are advocated.
Resumo:
M.A. Thesis / University of Pretoria / Department of Practical Theology / Advised by Prof M Masango
Resumo:
http://www.archive.org/details/challengeofchang028207mbp
Resumo:
In a constantly changing world, humans are adapted to alternate routinely between attending to familiar objects and testing hypotheses about novel ones. We can rapidly learn to recognize and narne novel objects without unselectively disrupting our memories of familiar ones. We can notice fine details that differentiate nearly identical objects and generalize across broad classes of dissimilar objects. This chapter describes a class of self-organizing neural network architectures--called ARTMAP-- that are capable of fast, yet stable, on-line recognition learning, hypothesis testing, and naming in response to an arbitrary stream of input patterns (Carpenter, Grossberg, Markuzon, Reynolds, and Rosen, 1992; Carpenter, Grossberg, and Reynolds, 1991). The intrinsic stability of ARTMAP allows the system to learn incrementally for an unlimited period of time. System stability properties can be traced to the structure of its learned memories, which encode clusters of attended features into its recognition categories, rather than slow averages of category inputs. The level of detail in the learned attentional focus is determined moment-by-moment, depending on predictive success: an error due to over-generalization automatically focuses attention on additional input details enough of which are learned in a new recognition category so that the predictive error will not be repeated. An ARTMAP system creates an evolving map between a variable number of learned categories that compress one feature space (e.g., visual features) to learned categories of another feature space (e.g., auditory features). Input vectors can be either binary or analog. Computational properties of the networks enable them to perform significantly better in benchmark studies than alternative machine learning, genetic algorithm, or neural network models. Some of the critical problems that challenge and constrain any such autonomous learning system will next be illustrated. Design principles that work together to solve these problems are then outlined. These principles are realized in the ARTMAP architecture, which is specified as an algorithm. Finally, ARTMAP dynamics are illustrated by means of a series of benchmark simulations.
Resumo:
BP (89-A-1204); Defense Advanced Research Projects Agency (90-0083); National Science Foundation (IRI-90-00530); Air Force Office of Scientific Research (90-0175, 90-0128); Army Research Office (DAAL-03-88-K0088)