11 resultados para broadcast bait

em Boston University Digital Common


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The proliferation of mobile computers and wireless networks requires the design of future distributed real-time applications to recognize and deal with the significant asymmetry between downstream and upstream communication capacities, and the significant disparity between server and client storage capacities. Recent research work proposed the use of Broadcast Disks as a scalable mechanism to deal with this problem. In this paper, we propose a new broadcast disks protocol, based on our Adaptive Information Dispersal Algorithm (AIDA). Our protocol is different from previous broadcast disks protocols in that it improves communication timeliness, fault-tolerance, and security, while allowing for a finer control of multiplexing of prioritized data (broadcast frequencies). We start with a general introduction of broadcast disks. Next, we propose broadcast disk organizations that are suitable for real-time applications. Next, we present AIDA and show its fault-tolerance and security properties. We conclude the paper with the description and analysis of AIDA-based broadcast disks organizations that achieve both timeliness and fault-tolerance, while preserving downstream communication capacity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The design of programs for broadcast disks which incorporate real-time and fault-tolerance requirements is considered. A generalized model for real-time fault-tolerant broadcast disks is defined. It is shown that designing programs for broadcast disks specified in this model is closely related to the scheduling of pinwheel task systems. Some new results in pinwheel scheduling theory are derived, which facilitate the efficient generation of real-time fault-tolerant broadcast disk programs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is an increased interest in using broadcast disks to support mobile access to real-time databases. However, previous work has only considered the design of real-time immutable broadcast disks, the contents of which do not change over time. This paper considers the design of programs for real-time mutable broadcast disks - broadcast disks whose contents are occasionally updated. Recent scheduling-theoretic results relating to pinwheel scheduling and pfair scheduling are used to design algorithms for the efficient generation of real-time mutable broadcast disk programs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In an n-way broadcast application each one of n overlay nodes wants to push its own distinct large data file to all other n-1 destinations as well as download their respective data files. BitTorrent-like swarming protocols are ideal choices for handling such massive data volume transfers. The original BitTorrent targets one-to-many broadcasts of a single file to a very large number of receivers and thus, by necessity, employs an almost random overlay topology. n-way broadcast applications on the other hand, owing to their inherent n-squared nature, are realizable only in small to medium scale networks. In this paper, we show that we can leverage this scale constraint to construct optimized overlay topologies that take into consideration the end-to-end characteristics of the network and as a consequence deliver far superior performance compared to random and myopic (local) approaches. We present the Max-Min and MaxSum peer-selection policies used by individual nodes to select their neighbors. The first one strives to maximize the available bandwidth to the slowest destination, while the second maximizes the aggregate output rate. We design a swarming protocol suitable for n-way broadcast and operate it on top of overlay graphs formed by nodes that employ Max-Min or Max-Sum policies. Using trace-driven simulation and measurements from a PlanetLab prototype implementation, we demonstrate that the performance of swarming on top of our constructed topologies is far superior to the performance of random and myopic overlays. Moreover, we show how to modify our swarming protocol to allow it to accommodate selfish nodes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Speculative Concurrency Control (SCC) [Best92a] is a new concurrency control approach especially suited for real-time database applications. It relies on the use of redundancy to ensure that serializable schedules are discovered and adopted as early as possible, thus increasing the likelihood of the timely commitment of transactions with strict timing constraints. In [Best92b], SCC-nS, a generic algorithm that characterizes a family of SCC-based algorithms was described, and its correctness established by showing that it only admits serializable histories. In this paper, we evaluate the performance of the Two-Shadow SCC algorithm (SCC-2S), a member of the SCC-nS family, which is notable for its minimal use of redundancy. In particular, we show that SCC-2S (as a representative of SCC-based algorithms) provides significant performance gains over the widely used Optimistic Concurrency Control with Broadcast Commit (OCC-BC), under a variety of operating conditions and workloads.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Routing protocols in wireless sensor networks (WSN) face two main challenges: first, the challenging environments in which WSNs are deployed negatively affect the quality of the routing process. Therefore, routing protocols for WSNs should recognize and react to node failures and packet losses. Second, sensor nodes are battery-powered, which makes power a scarce resource. Routing protocols should optimize power consumption to prolong the lifetime of the WSN. In this paper, we present a new adaptive routing protocol for WSNs, we call it M^2RC. M^2RC has two phases: mesh establishment phase and data forwarding phase. In the first phase, M^2RC establishes the routing state to enable multipath data forwarding. In the second phase, M^2RC forwards data packets from the source to the sink. Targeting hop-by-hop reliability, an M^2RC forwarding node waits for an acknowledgement (ACK) that its packets were correctly received at the next neighbor. Based on this feedback, an M^2RC node applies multiplicative-increase/additive-decrease (MIAD) to control the number of neighbors targeted by its packet broadcast. We simulated M^2RC in the ns-2 simulator and compared it to GRAB, Max-power, and Min-power routing schemes. Our simulations show that M^2RC achieves the highest throughput with at least 10-30% less consumed power per delivered report in scenarios where a certain number of nodes unexpectedly fail.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent work in sensor databases has focused extensively on distributed query problems, notably distributed computation of aggregates. Existing methods for computing aggregates broadcast queries to all sensors and use in-network aggregation of responses to minimize messaging costs. In this work, we focus on uniform random sampling across nodes, which can serve both as an alternative building block for aggregation and as an integral component of many other useful randomized algorithms. Prior to our work, the best existing proposals for uniform random sampling of sensors involve contacting all nodes in the network. We propose a practical method which is only approximately uniform, but contacts a number of sensors proportional to the diameter of the network instead of its size. The approximation achieved is tunably close to exact uniform sampling, and only relies on well-known existing primitives, namely geographic routing, distributed computation of Voronoi regions and von Neumann's rejection method. Ultimately, our sampling algorithm has the same worst-case asymptotic cost as routing a point-to-point message, and thus it is asymptotically optimal among request/reply-based sampling methods. We provide experimental results demonstrating the effectiveness of our algorithm on both synthetic and real sensor topologies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wireless Intrusion Detection Systems (WIDS) monitor 802.11 wireless frames (Layer-2) in an attempt to detect misuse. What distinguishes a WIDS from a traditional Network IDS is the ability to utilize the broadcast nature of the medium to reconstruct the physical location of the offending party, as opposed to its possibly spoofed (MAC addresses) identity in cyber space. Traditional Wireless Network Security Systems are still heavily anchored in the digital plane of "cyber space" and hence cannot be used reliably or effectively to derive the physical identity of an intruder in order to prevent further malicious wireless broadcasts, for example by escorting an intruder off the premises based on physical evidence. In this paper, we argue that Embedded Sensor Networks could be used effectively to bridge the gap between digital and physical security planes, and thus could be leveraged to provide reciprocal benefit to surveillance and security tasks on both planes. Toward that end, we present our recent experience integrating wireless networking security services into the SNBENCH (Sensor Network workBench). The SNBENCH provides an extensible framework that enables the rapid development and automated deployment of Sensor Network applications on a shared, embedded sensing and actuation infrastructure. The SNBENCH's extensible architecture allows an engineer to quickly integrate new sensing and response capabilities into the SNBENCH framework, while high-level languages and compilers allow novice SN programmers to compose SN service logic, unaware of the lower-level implementation details of tools on which their services rely. In this paper we convey the simplicity of the service composition through concrete examples that illustrate the power and potential of Wireless Security Services that span both the physical and digital plane.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Overlay networks have been used for adding and enhancing functionality to the end-users without requiring modifications in the Internet core mechanisms. Overlay networks have been used for a variety of popular applications including routing, file sharing, content distribution, and server deployment. Previous work has focused on devising practical neighbor selection heuristics under the assumption that users conform to a specific wiring protocol. This is not a valid assumption in highly decentralized systems like overlay networks. Overlay users may act selfishly and deviate from the default wiring protocols by utilizing knowledge they have about the network when selecting neighbors to improve the performance they receive from the overlay. This thesis goes against the conventional thinking that overlay users conform to a specific protocol. The contributions of this thesis are threefold. It provides a systematic evaluation of the design space of selfish neighbor selection strategies in real overlays, evaluates the performance of overlay networks that consist of users that select their neighbors selfishly, and examines the implications of selfish neighbor and server selection to overlay protocol design and service provisioning respectively. This thesis develops a game-theoretic framework that provides a unified approach to modeling Selfish Neighbor Selection (SNS) wiring procedures on behalf of selfish users. The model is general, and takes into consideration costs reflecting network latency and user preference profiles, the inherent directionality in overlay maintenance protocols, and connectivity constraints imposed on the system designer. Within this framework the notion of user’s "best response" wiring strategy is formalized as a k-median problem on asymmetric distance and is used to obtain overlay structures in which no node can re-wire to improve the performance it receives from the overlay. Evaluation results presented in this thesis indicate that selfish users can reap substantial performance benefits when connecting to overlay networks composed of non-selfish users. In addition, in overlays that are dominated by selfish users, the resulting stable wirings are optimized to such great extent that even non-selfish newcomers can extract near-optimal performance through naïve wiring strategies. To capitalize on the performance advantages of optimal neighbor selection strategies and the emergent global wirings that result, this thesis presents EGOIST: an SNS-inspired overlay network creation and maintenance routing system. Through an extensive measurement study on the deployed prototype, results presented in this thesis show that EGOIST’s neighbor selection primitives outperform existing heuristics on a variety of performance metrics, including delay, available bandwidth, and node utilization. Moreover, these results demonstrate that EGOIST is competitive with an optimal but unscalable full-mesh approach, remains highly effective under significant churn, is robust to cheating, and incurs minimal overheads. This thesis also studies selfish neighbor selection strategies for swarming applications. The main focus is on n-way broadcast applications where each of n overlay user wants to push its own distinct file to all other destinations as well as download their respective data files. Results presented in this thesis demonstrate that the performance of our swarming protocol for n-way broadcast on top of overlays of selfish users is far superior than the performance on top of existing overlays. In the context of service provisioning, this thesis examines the use of distributed approaches that enable a provider to determine the number and location of servers for optimal delivery of content or services to its selfish end-users. To leverage recent advances in virtualization technologies, this thesis develops and evaluates a distributed protocol to migrate servers based on end-users demand and only on local topological knowledge. Results under a range of network topologies and workloads suggest that the performance of the distributed deployment is comparable to that of the optimal but unscalable centralized deployment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a thorough characterization of the access patterns in blogspace -- a fast-growing constituent of the content available through the Internet -- which comprises a rich interconnected web of blog postings and comments by an increasingly prominent user community that collectively define what has become known as the blogosphere. Our characterization of over 35 million read, write, and administrative requests spanning a 28-day period is done from three different blogosphere perspectives. The server view characterizes the aggregate access patterns of all users to all blogs; the user view characterizes how individual users interact with blogosphere objects (blogs); the object view characterizes how individual blogs are accessed. Our findings support two important conclusions. First, we show that the nature of interactions between users and objects is fundamentally different in blogspace than that observed in traditional web content. Access to objects in blogspace could be conceived as part of an interaction between an author and its readership. As we show in our work, such interactions range from one-to-many "broadcast-type" and many-to-one "registration-type" communication between an author and its readers, to multi-way, iterative "parlor-type" dialogues among members of an interest group. This more-interactive nature of the blogosphere leads to interesting traffic and communication patterns, which are different from those observed in traditional web content. Second, we identify and characterize novel features of the blogosphere workload, and we investigate the similarities and differences between typical web server workloads and blogosphere server workloads. Given the increasing share of blogspace traffic, understanding such differences is important for capacity planning and traffic engineering purposes, for example.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Before choosing, it helps to know both the expected value signaled by a predictive cue and the associated uncertainty that the reward will be forthcoming. Recently, Fiorillo et al. (2003) found the dopamine (DA) neurons of the SNc exhibit sustained responses related to the uncertainty that a cure will be followed by reward, in addition to phasic responses related to reward prediction errors (RPEs). This suggests that cue-dependent anticipations of the timing, magnitude, and uncertainty of rewards are learned and reflected in components of the DA signals broadcast by SNc neurons. What is the minimal local circuit model that can explain such multifaceted reward-related learning? A new computational model shows how learned uncertainty responses emerge robustly on single trial along with phasic RPE responses, such that both types of DA responses exhibit the empirically observed dependence on conditional probability, expected value of reward, and time since onset of the reward-predicting cue. The model includes three major pathways for computing: immediate expected values of cures, timed predictions of reward magnitudes (and RPEs), and the uncertainty associated with these predictions. The first two model pathways refine those previously modeled by Brown et al. (1999). A third, newly modeled, pathway is formed by medium spiny projection neurons (MSPNs) of the matrix compartment of the striatum, whose axons co-release GABA and a neuropeptide, substance P, both at synapses with GABAergic neurons in the SNr and with the dendrites (in SNr) of DA neurons whose somas are in ventral SNc. Co-release enables efficient computation of sustained DA uncertainty responses that are a non-monotonic function of the conditonal probability that a reward will follow the cue. The new model's incorporation of a striatal microcircuit allowed it to reveals that variability in striatal cholinergic transmission can explain observed difference, between monkeys, in the amplitutude of the non-monotonic uncertainty function. Involvement of matriceal MSPNs and striatal cholinergic transmission implpies a relation between uncertainty in the cue-reward contigency and action-selection functions of the basal ganglia. The model synthesizes anatomical, electrophysiological and behavioral data regarding the midbrain DA system in a novel way, by relating the ability to compute uncertainty, in parallel with other aspects of reward contingencies, to the unique distribution of SP inputs in ventral SN.